Основные параметры усилителя нч и их измерение. Измерение выходной мощности усилителя низкой частоты Измерение импульсных напряжений

Не так часто приходится узнавать именно частоту переменного тока, по сравнению с такими показателями, как напряжение и сила тока. Например, для того чтобы измерить силу тока можно воспользоваться измерительными клещами, для этого даже необязательно контактировать с токопроводящими частями, да и напряжение проверяет любой стрелочный или цифровой мультиметр. Однако, чтобы проверить частоту, с какой меняется полярность в цепях переменного тока, то есть количество его полных периодов, используется частотомер. В принципе, прибор с таким же названием может измерять и количество механических колебаний за определённый период времени, но в этой статье речь пойдёт исключительно об электрической величине. Далее мы расскажем, как проводится измерение частоты переменного тока мультиметром и частотомером.

Какие приборы можно использовать

Классификация частотомеров

Все данные приборы делятся на две основные группы по области их применения:

  1. Электроизмерительные. Применяются для бытового или же производственного измерения частоты в цепях переменного тока. Их используют при частотной регулировке оборотов асинхронных двигателей, так как вид частотного измерения оборотов, в этом случае, самый эффективный и распространённый.
  2. Радиоизмерительные. Нашли применение исключительно в радиотехнике и могут измерять широкий диапазон высокочастотного напряжения.

По конструкции частотомеры делятся на щитовые, стационарные и переносные. Естественно, переносные более компактные, универсальные и мобильные устройства, которые широко применяются радиолюбителями.

Для любого типа частотомера самыми важными характеристиками, на которые, в принципе, и должен обращать внимание человек при покупке, являются:

  • Диапазон частот, которые прибор сможет измерить. При планировании работы именно со стандартной промышленной величиной 50 Гц, нужно внимательно ознакомиться с инструкцией, так как не все приборы её смогут увидеть.
  • Рабочее напряжение в цепях, в которых будут проходить измерительные работы.
  • Чувствительность, эта величина более важна для радиочастотных устройств.
  • Погрешность, с которой он может производить замеры.

Мультиметр с функцией измерения частоты переменного тока

Самый распространенный прибор, с помощью которого можно узнать величину частотных колебаний и который находится в свободном широком доступе - это мультиметр. Нужно обращать своё внимание на его функциональные возможности, так как не каждый такой прибор сможет измерить частоту переменного тока в розетке или же другой электрической цепи.

Такой тестер выполняется чаще всего очень компактным, для того чтобы в сумке он легко помещался, и был максимально функциональным, измеряющим помимо частоты также напряжение, ток, сопротивление, а иногда даже температуру воздуха, ёмкость и индуктивность. Современный вид мультиметра и его схема основаны чисто на цифровых электронных элементах, для более точного измерения. Состоит такой мультиметр из:

  • Жидкокристаллического информативного индикатора для отображения результатов измерения, расположенного, чаще всего, в верхней части конструкции.
  • Переключателя, в основном, он выполнен в виде механического элемента, позволяющего быстро перейти от измерения одних величин к другим. Нужно быть очень осторожным, так как, допустим, если измерять напряжение, а переключатель будет стоять на отметке «I», то есть сила тока, тогда следствием этого неминуемо будет , которое приведёт не только к выходу со строя прибора, но может вызвать и термический ожог дугой рук и лица человека.
  • Гнезд для щупов. С их помощью непосредственно происходит электрическая связь прибора с измеряемым токопроводящим объектом. Провода не должны иметь потрескиваний и изломов изоляции, особенно это касается их наконечников, которые будут находиться в руках измеряющего.

Хотелось бы также упомянуть о специальных приставках к мультиметру, которые существуют и разработаны специально для того, чтобы увеличить число функций обычного прибора со стандартным набором.

Как выполняется измерение частоты

Перед тем как пользоваться мультиметром, а в частности, частотомером, внимательно нужно ознакомиться ещё раз с теми параметрами, которые он имеет возможность измерять. Для того чтобы правильно произвести их замер нужно освоить несколько этапов:

  1. Включить прибор соответствующей кнопкой на корпусе, чаще всего она выделена ярким цветом.
  2. Установить переключатель на измерение частоты переменного тока.
  3. Взяв в руки два щупа и подключив их, согласно инструкции в соответствующие гнёзда, произведём опробование измерительного устройства. Для начала нужно попробовать узнать частоту напряжения в стандартной сети 220 Вольт, она должна равняться 50 Гц (отклонение может быть в несколько десятых). Эта величина чётко контролируется поставщиком электрической энергии, так как при её изменении могут выйти из строя электроприборы. Поставщик отвечает за качество предоставляемой электроэнергии и строго соблюдает все её параметры. Кстати, такая величина является стандартной не во всех странах. Присоединив выводы частотомера к выводам розетки, на приборе высветится величина около 50 Гц. Если показатель будет отличаться, то это будет его погрешностью и при следующих измерениях это нужно будет обязательно учесть.

Другие альтернативные методы измерения

Самый эффективный и простой способ проверки частоты — это использование осциллографа. Именно осциллографом пользуются все профессиональные электронщики, так как на нём можно визуально увидеть не только цифры, но и саму диаграмму. При этом нужно обязательно отключить встроенный генератор. Новичку в электронике будет довольно проблематично выполнить данные измерения с помощью этого прибора. О том, мы рассказали в отдельной статье.

Второй вариант — это измерение с помощью конденсаторного частотомера, имеющего диапазон измерений 10 Гц-1 МГц и погрешность около 2%. Он определяет среднее значение тока разрядки и зарядки, которое будет пропорционально частоте и измеряется косвенно с помощью магнитоэлектрического амперметра, со специальной шкалой.

Ещё один метод называется резонансный и основан он на явлении резонанса, возникающего в электрическом контуре. Тоже имеет шкалу с механизмом точной подстройки. Однако промышленную величину в 50 Гц этим способом невозможно проверить, работает он от 50 000 Гц.

Также вы должны знать, что существует реле частоты. Обычно на предприятиях, подстанциях, электростанциях — это основное устройство, которым контролируют изменение частоты. Данное реле воздействует на другие устройства защиты и автоматики для поддержания частоты на необходимом уровне. Есть разные типы реле частоты с разным функционалом, об этом мы расскажем в других публикациях.

Все же мультиметры и электронные цифровые частотомеры работают на обычном счёте импульсов, которые являются неотъемлемой частью, как импульсного так и другого переменного напряжения, необязательно синусоидального за определенный промежуток времени, обеспечивая при этом максимальную точность, а также широчайший диапазон.

Измерение напряжения и тока на промышленной частоте может быть выполнено любыми вольтметрами и амперметрами, работающими на частоте 50 Гц, но только когда объект измерения мощный. Такие измерения выполняются в основном электромагнитными и электродинамическими вольтметрами и амперметрами.

Для измерения напряжения на переменной частоте применяют компенсаторы переменного тока . Чтобы уравновесить измеряемое напряжениеu х =U х e jφ x компенсирующим напряжениемu к =U к e jφ к, необходимо выполнение следующих условий: равенство напряженийU x =U к по модулю; противоположность их фаз (φ х -φ к =180º); равенство частот; одинаковая форма измеряемого и компенсирующего напряжений. Компенсаторы переменного тока менее точны по сравнению с компенсаторами постоянного тока, так как отсутствует эталон ЭДС переменного тока.

II. Измерение напряжения на повышенной и высокой частотах.

Измерение напряжения на повышенной и высокой частотах осуществляется вольтметрами, работающими в указанном диапазоне частот, а также электронными осциллографами.

Осциллографы – приборы, чувствительные к напряжению, поэтому все измерения, выполняемые ими, сводятся к измерению отклонения электронного луча под действием приложенного напряжения. Для конкретного исследования сигнала необходимо правильно выбрать тип осциллографа, выполнив условие согласования, подключить осциллограф к объекту измерения, заземлить, а затем определить вид синхронизации, ее амплитуду, режим развертки, длительность, коэффициент отклонения. От правильного учета возможных искажений и погрешностей зависит точность полученных результатов измерений.

III. Измерение тока в цепях повышенной и высокой частоты.

С увеличением частоты точность измерения переменного тока электромагнитными и электродинамическими амперметрами в обычном исполнении падает. Приборы специального изготовления имеют расширенный диапазон частот (до 10 кГц) и используются для измерения токов в мощных цепях.

Рисунок 7.

Измерение токов в цепях высокой частоты выполняется в основном термоэлектрическими амперметрами .

Термоамперметры – сочетание термопреобразователя и магнитоэлектрического измерительного механизма. Термопреобразователь состоит из одной или нескольких термопар и нагревателя. При протекании тока по нагревателю, выполненному из материала с большим удельным сопротивлением (нихром, константан и т.д.), выделяется тепло, под действием которого нагревается горячий спай термопары, а на ее холодных концах возникает термо-ЭДС.

Термо-ЭДС зависит от материала проводников термопары и пропорциональна разности температур горячего и холодного концов, т.е. пропорциональна температуре перегрева θ: Е Т =kθ.

В среднем Е Т равно 30-40 мкВ на 1ºС перегрева. Вследствие инерции нагревателя температура перегрева не успевает следовать за изменениями подводимого тепла и определяется его средним значением:

(5)

Если холодные концы термопары замкнуть на измерительный магнитоэлектрический механизм, то по замкнутой цепи измерителя потечет ток I И =E T /R И =(k 1 I 2)/R И =k 2 I 2 , (6)

Где I– среднеквадратичное значение тока;R И – сопротивление цепи измерителя, включая термопару;k 1 ,k 2 - коэффициенты пропорциональности, зависящие соответственно от свойств термопары и данных измерительного механизма.

Так как в (6) значение измеряемого тока входит в квадрате, то прибор пригоден для измерений в цепях как постоянного, так и переменного токов. Шкала прибора градуируется в среднеквадратичных значениях тока.

Рисунок 8.

Данный тип приборов позволяет проводить измерения переменного тока в диапазоне частот 50 Гц – 200 МГц и диапазоне токов от 100 мкА до десятков ампер. Кроме того, термоамперметры позволяют измерять постоянный и несинусоидальный токи (в последнем случае показания будут приближенно соответствовать среднеквадратичному значению тока, т.е.
).

ИЗМЕРЕНИЕ ИМПУЛЬСНЫХ НАПРЯЖЕНИЙ

Процесс определения амплитудных и временных параметров импульсных сигналов с помощью осциллографа длителен и выполняется с большой погрешностью. Более высокую точность измерения амплитуды импульса при удобной и быстрой индикации обеспечивают аналоговые и цифровые импульсные вольтметры. В связи с повышением быстродействия импульсных устройств диапазон длительности импульсов уменьшился с микросекундного до нано- и пикосекундного, одновременно уменьшилась амплитуда импульсов до значений 0,01 – 1 В, характерных для полупроводниковых приборов, микромодульных и интегральных схем.

Диапазон частот повторения импульсов простирается от одиночных импульсов (частота повторения доли герца) до сотен мегагерц. Все специализированные измерители импульсных напряжений наносекундного диапазона имеют на входе широкополосные преобразователи импульсов, которые их расширяют, сужая тем самым спектр частот. В качестве преобразователя импульсов используют чувствительные полупроводниковые диоды, у которых имеются участки вольт-амперной характеристики с наименьшим радиусом кривизны, характеризующей переход от запертого к открытому состоянию. Включенные после преобразователей импульсные вольтметры могут быть узкополосными, так как работают с уже преобразованными сигналами.

    Измерение импульсного напряжения диодно-конденсаторным вольтметром.

Импульсный диодно-конденсаторный вольтметр работает как электронный вольтметр синусоидального напряжения и выполняется по схеме преобразователь пикового значения – усилитель постоянного тока – магнитоэлектрический измерительный прибор.

Если на вход преобразователя подать периодическую последовательность прямоугольных импульсов (рис. 9), то конденсатор С заряжается во время t И существования импульса на входе, а в промежутке между импульсами Т -t И медленно разряжается на резистор сопротивлениемR. Если же времяt И будет мало, а Т велико, то за время действия короткого импульса конденсатор не успевает полностью зарядиться, и среднее значение напряженияU C ср на конденсаторе за период Т повторения импульса может значительно отличаться от амплитудного (пикового) значенияU M измеряемого импульса.

Мне нравится метод, предложенный вами, но… В первом случае нужен осциллограф, во втором — «собрать простую схему». Ни того ни другого у меня нет…
Поэтому я нашел (как мне казалось) способ. который демонстрировалась на видео в Ю-Тьюб
Все сделал именно так, как там показано: подал частоту 50 Гц, вольтметр переменнотого тока подключил параллельно на выход на выход усилителя, токовыми клещами замерил силу тока и а одном из проводов идущих на динамик… Я не понял, что я получил в итоге. Ток = 1 ампер, напряжение — 10 Вольт… Почему тогда динамик «резонирует» на полную катушку? Я ожидал увидеть там что-то в пределах 300 Ватт. Например, 6 ампер * 50 вольт (параметры примерно соответствующие сопротивлению 8 Ом) = 300 Ватт. Это как-то понятно.
Я не совсем понял Ваши замечания про «согласованную нагрузку» — знаний не хватает…
Мануалы я все перечитал Но это не решает моей задачи — определить какая мощность идет на акустическую систему.
Я «обрадовался», узнав, что ее можно померять с помощью Вольтметра и Токовых клещей, но… Я уже написал, чем это у меня закончилось
Извините, что много текста
А понять эти мощности мне нужно для следующего случая. Когда я подаю «неэквализированнй» сигнал с усилителя на акустику, тут вопросов не возникает: мощности усилителя и акустики — сопоставимы и даже на слух все слышно (300 ватт на слух я представляю).
Но, когда я эквализирую (при помощи кроссовера) и «развожу» сигналы на разные акустические системы (убираю низкие частоты из Фронтальной акустики — порталов и отправляю на саб-вуферы), то на слух уже абсолютно непонятно, какие мощности и куда пошли. В это время в студии гремят примерно 2,5-3 кВт.
Особенная проблема возникает в сабвуфере. В нем вообще на слух непонятно, сколько на него подается мощности: Саб-вуфер — 800 Ватт, усилитель — 1,5 кВт (оба на 8 Ом). Вот, тут и понадобилось замерить, что именно идет на динамик… И тут, как вы понимаете, у меня и появились проблемы, с которыми я к вам обратился.
Надеюсь, это проясняет вам те проблемы, с которыми я к вам и обратился
Заранее благодарен

Иными словами мой вопрос кратко звучит так:
Возможно ли при помощи Вольтмерта и Токовых клещей переменного тока измерить мощность, которую усилитель выдает на динамик? И если можно, то как?

Владимир, ваш подход некорректен, поэтому я и удалил ссылку на ролик. Вы пытаетесь измерить мощность, выделяемую на реактивной, а не на активной нагрузке. А для этого бы понадобилось синхронно измерить пиковые значения тока и напряжения с частотой дискретизации, во много раз превышающей частоту сигнала. После этого, нужно было бы перемножить значения каждой полученной пары и вычислить из полученной последовательности среднеквадратичные значения.

В принципе, такие приборы существуют и стоят недорого. Называются Ваттметрами или Измерителями мощности. Работают они на основе АЦП и микропроцессоров, способных произвести подобные расчёты. Цена вопроса около 15$.

Но, вот только все эти бюджетные Power Meter-ы заточены под замер мощности бытовых приборов и рассчитаны на работу в качестве переходника между сетью и нагрузкой. Минимально-допустимое измеряемое напряжение у них 80-90 Вольт. Прибор же, способный работать в более широком диапазоне напряжений и частот сигнала, будет стоить на порядок дороже.

Когда я занимался схожим ремеслом, подобных приборов ещё не было и в помине. А Ваттметр теплового типа (тогда же тоже чем-то измеряли) я видел только раз в жизни в одной их лабораторий города. Кроме этого, в практике ремонта, использование активной нагрузки даже предпочтительнее, так как, скажем, при мощности 2х150 Ватт, сложно было бы устроить четырёхчасовые стендовые испытания усилителя на реальные динамики.

Возможно ли при помощи Вольтмерта и Токовых клещей переменного тока измерить мощность, которую усилитель выдает на динамик? И если можно, то как?

Я же вам выше писал, что вам тогда бы потребовалось узнать, при какой амплитуде выходного напряжения, сигнала начнёт ограничиваться. Там же напряжение в квадрате — это парабола. Даже при небольшой ошибке, результат будет сильно отличаться. Кроме этого, динамик — реактивная нагрузка. Ток и напряжение не совпадают по фазе.

Уважаемый Админ (к сожалению, не знаю вашего имени).
Если я вас утомил, то можете игнорировать мое сообщение и даже удалить его Но мне очень хочется разобраться в данном вопросе.
Из всего, что вы поведали я не могу понять, что не так в замерах, представленных на видео и главное ПОЧЕМУ, когда я делаю точно такие же замеры, я вижу абсолютно другие показатели. Кстати, если воспользоваться вашим методом №2, то по идее они будут отличаться от моих на 1.44 (корень из 2) от тех, которые я бы увидел на своем вольтметре. Но я и примерно не вижу таких напряжений, подключив сабвуфер в 800 ватт (на вашей картинке это 28 вольт). Да, я подключаю динамик, а не резистор. Но это не может изменить показатели на порядок.
Согласен, что замер не корректен (но я не ищу абсолютной точности) и вопросы остаются:
1. Я подаю синусоиду в 50 Гц, а не музыкальный фрагмент. Следовательно нет большой необходимости делать замеры с очень высокой дискретизацией.
2. Я не меряю «пики». Мой сабвуферный усилитель (1,5 кВт), значительно мощнее сабвуфера (800 Ватт) и вряд ли начнет пиковать… Раньше «вылетит» динамик на сабвуфере, чего я собвственно и хочу избежать — это главная цель — понять какие ПРИМЕРНО мощности летят на динамик.
3. Я пытаюсь понять по напряжению на выходе усилителя, на каком уровне громкости он из своих 1.5 кВт на канал уже отдал динамику, необходимые ему 600 Ватт? То есть я ловлю не пики, а тот момент, когда громкость уже добавлять опасно для динамика. Например, выйти и не превысить уровнеь в 600 Ватт. При 8 Омном динамике (даже с учетом реактивного сопротивления) это должно быть примерно 8 ампер и 80 ватт. Никак не 10 Ватт, которые я вижу при своем замере.
4. Амперы я меряю не дешевыми (как на видео) токовыми клещами, а теми, которые вычисляют True RMS (среднеквадратичные значения). Амперметр, грубо говоря, «не знает», что я меряю еще и напряжение. Поэтому ему не важно, что ток и напряжение не совпадают по фазе. Он должен показать ток, соответствующий 8 или 10 амперам. Вопрос — почему я не вижу на приборе этот ток! Вот, это меня и сбивает с толку абсолютно… И я начинаю искать тех, кто возможно знает «какой-то секрет»
Извините, если вас уже замучали мои расспросы…
Спасибо.

Владимир, мне нетрудно отвечать и вам рассказал о методах измерений, с помощью которых можно получить вменяемый результат.

По логике, при расчёте мощности, исходя их сопротивления динамика и напряжения на нём, вы должны получить завышенные результаты, по сравнению с реальными. Как именно вы измеряете и что можете принять за точку отсчёта, мне совершенно непонятно. В технике такие понятия как «когда громкость уже добавлять опасно», использовать нельзя. В то же время, мы пока не знаем, насколько точны показания ваших приборов.

Вольтметр переменного тока можно проверит, измеряя напряжение сети. Затем, можно спаять делитель напряжения и проверить прибор на других пределах измерения переменного напряжения. С помощью резисторов, номиналы которых известны, можно проверить омметр и амперметр, сделав самые простые вычисления. Конечно, это не метрологические испытания, но хоть какая-то проверка.

Надеюсь, что синусоидальный сигнал действительно доходит до динамика в неискажённом виде.

1. Вы видимо не поняли, для чего нужна та самая дискретизация. Когда фазы тока и напряжения не совпадают, то можно замерить только пиковую мощность в кокой-то очень короткий промежуток времени. Чем короче этот промежуток, тем точнее измерение. В следующий промежуток, пиковые значения могут измениться и нужно снова делать замер. Например, когда напряжение синусоидального сигнала достигнет максимума, ток вовсе не будет максимальным из-за того самого сдвига фаз. Поэтому делать подобные замеры обычными приборами некорректно.

2. Так быть не должно. Мощность усилителя не должна превышать максимальную долговременную мощность динамиков. Но ещё предпочтительнее, чтобы динамики были раза в полтора мощнее. Причём, значения мощности должны быть в одних и тех же единицах. Сейчас придумали много разных терминов, вводящих в заблуждение. Лучше всего использовать действующую или среднеквадратичную мощность RMS (Root Mean Square).

3. Смотри пункт 2. Тогда можно устанавливать любую мощность на слух.

4. Вы заблуждаетесь. Мощность, это произведение тока на напряжение, поэтому очень важно, какой ток и какое напряжение воздействуют на нагрузку в каждый отдельный момент времени. Неважно это в тех случаях, когда ток постоянный, или, когда фазы переменного тока и напряжения совпадают.

Уважаемый Админ
Согласен, что в данным замерах может присутствовать некорректность.. В отсутствии осциллографа о точности говорить не приходится, но… Как человек с «математическим складом ума» я понимаю, что какая-то зависимость даже при не совсем корректных замерах должна быть.
Давайте попробуем пойти методом от обратного
Если мы возьмем за основу ваш второй способ (Измерение выходной мощности усилителя с использованием вольтметра), то можно предположить некоторые альтернативные подходы.
Допустим, что у меня нет под рукой «простой схемы», чтобы отловить пики… Убираем этот компонет. По теории, на вольтметре в вашем случае на вашем усилителе я должен буду увидеть не 28 Вольт, а 28/1,41=19.9 Вольт или что-то близкое к этому. Правильно?
Насколько я вижу, вы очень хорошо разбираетесь в теории
Что мы увидим на вольт-метре, если мы резистер заменим на акустическую систему с сопротивлением 8 Ом? Не дешевенькую, а в хорошем исполнением, с высоким демпфированием, которая не подразумевает радикального отклонения от своих заявленных характеристик. Я думаю, там определенно будет что-то в пределах все тех же 19,9 вольт (точно не 10 и не 30). Речь идет о 100 Ваттном усилителе в вашем случае.
Теперь — о моем случае. Я беру усилитель, который на 8 Омах по паспорту выдает номинально 1,5 кВт. Допускаю мысть, что он может дать меньше, но не намного. Это достаточно мощный и дорогой студийный усилитель. Подключаю к нему сабвуфер (800 ватт при тех же 8 Омах). Подаю на вход усилителя синусоиду 50 Гц и кручу уровень громкости до половины. Я понимаю, что звук словами не опишешь, но я действую как аналитик: звук нарастает (на слух) равномерно. Где-то на середине (я так думаю, что это в пределах 500-600 Ватт) в студии начинают дрожать окна, «подпрыгивать» большие барабаны, микрофоны скачут по столу Это то, что я называл странным для вас термином «когда громкость уже добавлять опасно», имея в виду, что динамик может уже и повредиться… Но давайте для чистоты эксперимента отбросим эту лирику…
Итак, практический эксперимент: 50 Герц, половина громкости усилителя в 1,5 кВт, диманик 800 ватт и вольтметр, подключенный к выходу усилителя (или клемам динамика). Сколько при этом Вольт ТЕОРИТИЧЕСКИ покажет вольт-метр?
Возможно, это некорректно, возможно не совсем понятно, но он ТОЧНО покажет какое-то стабильное число (как в вашем случае на экране застыло 28 вольт).
Может мне и кажется, но это число, в отсутствии осциллографа и других возможностей, мне поможет ОЧЕНЬ ПРИМЕРНО понять, что просходит в акустических системах.
Вопрос: в каких пределах это число должно быть в теории?
СПАСИБО
P.S. Про проверку своих измерительных инструментов — мысль очень здравая. Она мне сразу пришла на ум Я брал у друзей другие приборы, сверял показатели и т.п. Аномалий не выявлено Жаль ни у кого нет осциллографа Но я продолжаю поиски…

Владимир, я не против вашего подхода и согласен, что относительную мощность в нагрузке можно замерить с помощью вольтметра. Именно на этом принципе основана работа индикаторов перегрузки, которые нередко встраивают в бытовые акустические системы, чтобы предотвратить их выход из строя при подключении УНЧ неизвестной мощности. Но эти индикаторы заточены на работу с конкретной нагрузкой. Вы тоже можете построить таблицу соответствий, где в одной графе будут значения мощности, полученные указанным в статье способом, а в другой — соответствующие значения напряжения на конкретной АС. Но, для этого нужно иметь некую точку отсчёта в метрологическом плане.

По поводу ваших экспериментов я уже писал выше и могу только повторить, с чего вам нужно начинать.

1. Проверить вольтметр. (Вы проверили точность показаний вольтметра?)

2. Проверить омметр. (Вы проверили точность показаний омметра?)

3. Замерить сопротивление динамика. Например, две четырёхтомные катушки могли быть подключены параллельно, а не последовательно, то есть там не 8 Ом, а всего 2 Ома. (Вы произвели этот замер?)

4. Замерить напряжение на динамике при разных положения регулятора громкости.

6. При 500 Ватт мощности, вы должны получить, на активной нагрузке 8 Ом, значение действующего напряжения около:
U = √(P*R) = √(500*8) ≈ 63(Вольт RMS)

На реактивной нагрузке 8 Ом, по идее, должно быть чуть больше, может 70 или 80 Вольт RMS. Но, я таких сравнительных экспериментов не проводил.

И последнее. Чудес не бывает. Это доказал наш профессор Преображенский. Если вы уверены, скажем, что мощность огромная, а на выходе слишком маленькое напряжение, значит куда-то закралась ошибка, либо в методику измерений и вычислений, либо в работу измерительной аппаратуры. Закон Ома обычно помогает понять, где скрыта ошибка.

1. — Проверил. На входе усилителя он честно показывает 223 Вольта Для разнообразия потыкал его в другие приборы и подключал рядом другой вольт-метр. Аномалий не выявил.

2. — Проверил. Токовые клещи (Uni-T UT204) чуток ошибались на мили-амперных изремениях, но на токах побольше (от 0.5 амперов) работают как часы Подключал рядом «обычный» вольт/ампер метр (до 10А) — показывает тоже самое. Собственно и брал токовые клещи с учетом того, что ток по идее может быть в кабеле >10А, но не нашел его там

3. — Смотрел и на характеристики и внуть сабвуфера. . Там — один сабвуферный динамик без фильтров на базе динамика MAG 1880. Мощность в 800 ватт, видимо, заявляли для сабвуферного исполнения. Сопротивление «покоя» 6 Ом. Заявляют 8, видимо, тоже для «активного» состояния? Но это все ровно не внесло бы значительных (в разы!) изменений в замеры…

4. — пробовал…
это на середине громкости было 10.6 вольт (и 1 ампер). Громкость на слух у меня никак не увязывалась в голове с 10-15 ваттами

На реактивной нагрузке 8 Ом, по идее, должно быть чуть больше, может 70 или 80 Вольт RMS.

Но, я таких сравнительных экспериментов не проводил.

Чудес не бывает… Закон Ома обычно помогает понять, где скрыта ошибка…
- Либо таки бывают чудеса, но заком Ома мне как-то не помог

Я уж думал, что какой-то «электро-волшебник » мне скажет — «Дружище, тут же нужно применить коэфиициент такой-то и умножить все на 7 !!!»… Но, увы… Нет там никаких таких значительных коэффициентов, что вы и подтвердили Спасибо. Закон Ома должен даже с погрешностями моих измерений, но соответстовать заявленным мощностям…

Ну. или 12 ватт, а точнее 10 вольт и 1 амрер поданые на динамик — это ОЧЕНЬ громко!
Я тогда даже не могу представить, что должен выдать динамик, если на него подать 50 вольт

В любом случае, СПАСИБО вам за идеи, алгоритм и ВРЕМЯ…
В ближайшее время попробую еще раз добраться до студии с инструментами и все там перемерять еще раз

Владимир, может быть вы с порядком числа ошиблись на шкале прибора. Вы для измерения на выходе УНЧ, использовали тот же диапазон измерений, что и при замере напряжения сети?

В конце концов, спросите к Клячина, раз вы уже до него добрались. Он гуру в этих вещах и наверняка встречал разные ошибки измерений.

В конструкторской деятельности многих радиолюбителей усилитель звуковой частоты (34) занимает одно из первых мест. От усилителя 34 в значительной степени зависит качество звучания радиовещательного приемника, телевизора, магнитофона.

В описаниях усилителей 34, предназначенных для электрофонов, магнитофонов, радиовещательных приемников, обычно указывают их номинальную выходную мощность, номинальное входное напряжение, коэффициент гармоник и параметры частотной характеристики. По этим основным данным уже можно судить о качестве работы усилителя и пригодности его для тех или иных целей.

Напомним вкратце, что собой представляют названные параметры усилителя 34.

Номинальная выходная мощность Р НО м, выраженная в ваттах или милливаттах,-это мощность, выделяемая на нагрузке (звуковой катушке динамической^ головки громкоговорителя, обмотке головного телефона), при которой нелинейные искажения, вносимые усилителем, соответствуют указанным в описании. При дальнейшем увеличении выходной мощности эти искажения значительно* возрастают.

В процессе усиления любого сигнала из-за нелинейности характеристик транзисторов или электронных ламп в усиливаемом сигнале появляются колебания частотой в 2, 3, 4 и более раз выше основной частоты, т. е. появляются’ вторая, третья и т. д. гармоники сигнала. Они и искажают усиливаемый сигнал. Гармонические искажения растут по мере увеличения выходной мощности усилителя 34*. Оценивают их коэффициентом гармоник. Мощность, при которой искажения (коэффициент гармоник) достигают 10%, принято называть максимальной выходной мощностью усилителя 34 (ее обозначают Ртах).

Коэффициент гармоник Кг, измеряемый при синусоидальном входном сигнале, можно выразить процентным отношением суммарного напряжения всех гармоник U r к выходному напряжению и вых:

номерность АЧХ в рабочем диапазоне, пересекает АЧХ на частотах 75 в 11 ООО Гц. Следовательно, рабочий диапазон частот усилителя простирается от 75 до И ООО Гц.

Многие усилители 34 кроме регулятора громкости оснащены еще двумя (реже - тремя и более) регуляторами тембра - по низшим и высшим звуковым частотам. АЧХ таких усилителей снимают не менее трех раз, причем при входном напряжении, пониженном примерно на 20 дБ (в 10 раз) по сравнению* с номинальным (во избежание перегрузки при подъеме усиления на краях рабочего диапазона). Сначала оба регулятора тембра такого усилителя 34 устанавливают в положения, соответствующие спаду АЧХ на краях диапазона. Полученная АЧХ может иметь вид кривой 1 (рис. 107). Затем оба регулятора тембра переводят в другие крайние положения (подъем АЧХ на краях диапазона). АЧХ усилителя в этом случае может иметь вид кривой 2. После этого регуляторы тембра устанавливают в средние положения и снимают АЧХ еще раз. Если она близка к кривой 3, то на этом измерения заканчивают, а если значительно отличается от нее, то путем проб находят такие положения регуляторов тембра, при которых АЧХ получается наиболее ровной и параллельной оси частот в возможно более широкой полосе, и на ручках регуляторов делают соответствующие отметки.

Из графиков’на рис. 107 ясно видно, что у данного усилителя 34 пределы регулирования тембра на низшей частоте 63 Гц составляют +6…-6 дБ, а на высшей, равной 11 000 Гц,-примерно +5…-10 дБ. Так с помощью простых приборов лаборатории, пользуясь изложенной методикой, можно с достаточной для радиолюбителя точностью измерить основные параметры практически любого усилителя 34.