Бесконтактное измерение температуры. Пирометры для измерения температуры бесконтактным методом

Все электроприборы работают за счет прохождения через них электрического тока, который дополнительно нагревает проводники и оборудование. При этом в нормальном режиме эксплуатации создается баланс между повышением температуры и отводом ее части в окружающую среду.

При нарушениях качества контактов ухудшаются условия прохождения тока и повышается температура, которая может стать причиной неисправности. Поэтому в сложных электротехнических устройствах, особенно на высоковольтном оборудовании предприятий энергетики, осуществляется периодический контроль нагрева токоведущих частей.

Для устройств, находящихся под высоким напряжением, измерения осуществляются бесконтактным методом на безопасном расстоянии.

Принципы дистанционного измерения температуры

У любого физического тела происходит движение атомов и молекул, которое сопровождается . Температура объекта влияет на интенсивность этих процессов и о ее величине можно судить по значению теплового потока.

Бесконтактное измерение температуры основано на этом принципе.

Источник обследования с температурой «Т» излучает в окружающее пространство тепловой поток «Ф», который воспринимается тепловым датчиком, удаленным от источника тепла. После него преобразованный внутренней схемой сигнал выдается на информационное табло «И».

Приборы измерения температуры, осуществляющие ее замер по инфракрасному излучению, называют инфракрасными термометрами либо сокращенным названием «пирометры».

Для их точной работы важно правильно определить диапазон измерения на шкале электромагнитных волн, который составляет область примерно 0,5?20 мкм.

Факторы, влияющие на качество измерения

Погрешность пирометров зависит от комплекса факторов:

  1. поверхность наблюдаемой площади объекта должна быть в зоне прямого обзора;
  2. пыль, туман, пар и другие предметы между тепловым датчиком и источником тепла ослабляют сигнал, как и следы загрязнения на оптике;
  3. структура и состояние поверхности исследуемого тела влияют на интенсивность инфракрасного потока и показания измерителя температуры.

Влияние третьего фактора объясняет график изменения коэффициента излучения? от длины волны.

Он демонстрирует характеристики излучателей черного, серого и цветного оттенков.

Способность инфракрасного излучения Фs черного материала берется за основу сравнения других изделий и принимается равным 1. Коэффициенты всех остальных реальных веществ ФR становятся меньше 1.

На практике пирометры пересчитывают излучение реальных объектов на показатели идеального излучателя.

Также на измерение оказывают влияние:

    длина волны инфракрасного спектра, на которой проводится замер;

    температура исследуемого вещества.

Как устроен бесконтактный измеритель температуры

По способу вывода информации и ее обработки приборы удаленного контроля нагрева поверхностей подразделяют на:

    пирометры;

    тепловизоры.

Устройство пирометров

Условно состав этих приборов поблочно можно представить:

    инфракрасным датчиком с оптической системой и зеркальным световодом;

    электронной схемой, преобразующей полученный сигнал;

    дисплеем, на котором отображается температура;

    кнопкой включения.

Поток теплового излучения фокусируется оптической системой и зеркалами направляется на датчик первичного преобразования тепловой энергии в электрический сигнал с величиной напряжения, прямо пропорциональной инфракрасному излучению.

Вторичное преобразование электрического сигнала происходит в электронном устройстве, после которого измерительно-счетный модуль осуществляет вывод информации на дисплей, как правило, в .

На первый взгляд кажется, что пользователю для замера температуры удаленного объекта достаточно:

    включить прибор нажатием на кнопку;

    навести на исследуемый объект;

    снять показания.

Однако, для точного измерения необходимо не только учесть факторы, влияющие на показания, но и правильно выбрать расстояние до объекта, которое определяется оптическим разрешением прибора.

Пирометры обладают различными углами обзора, характеристикой которых для удобства пользователей выбраны соотношения между расстоянием до объекта измерения и площадью охвата контролируемой поверхностью. В качестве примера на картинке приведено соотношение 10:1.

Поскольку эти характеристики прямо пропорциональны между собой, то для точного измерения температуры необходимо не только правильно навести прибор на объект, но и подобрать расстояние для выбора площади измеряемой зоны.

Тогда оптическая система будет обрабатывать тепловой поток от нужной поверхности без учета влияния излучения окружающих предметов.

С этой целью усовершенствованные модели пирометров оснащаются лазерными целеуказателями, которые помогают навести термодатчик на объект и облегчить определение площади контролируемой поверхности. Они могут иметь разные принципы работы и обладать неодинаковой точностью наведения.

Одиночный лазерный луч лишь приблизительно указывает место центра контролируемой зоны и позволяет определить ее границы неточно. Его ось смещена относительно центра оптической системы пирометра. За счет этого вводится погрешность параллакса.

Коаксиальный способ лишен этого недостатка - луч лазера совпадает с оптической осью прибора и точно указывает центр измеряемой площади, но не определяет ее границы.

Указание размеров контролируемого участка предусмотрено в целеуказателе с двойным лазерным лучом . Но при маленьких расстояниях до объекта допускается ошибка, вызванная первоначальным сужением области чувствительности. Этот недостаток сильно проявляется на объективах с короткофокусным расстоянием.

Целеуказатели с кросс-лазером улучшают точность работы пирометров, оснащенных объективами с коротким фокусом.

Одиночный круговой лазерный луч позволяет определить зону контроля, но он тоже обладает параллаксом и завышает показания прибора на коротких дистанциях.

Круговой точный лазерный целеуказатель работает наиболее надежно и лишен всех недостатков предшествующих конструкций.

Пирометры отображают информацию о температуре методом текстово-цифрового вывода на дисплей, которая может дополняться другими сведениями.

Устройство тепловизоров

Конструкция этих измерительных приборов температуры напоминает устройство пирометров. У них в качестве приемного элемента потока инфракрасного излучения работает гибридная микросхема.

Она своим фоточувствительным эпитаксиальным слоем через сильнолегированную подложку воспринимает ИК поток.

Устройство приемника тепловизора с гибридной микросхемой показано на картинке.

Тепловая чувствительность тепловизоров на основе матричных детекторов позволяет измерять температуру с точностью до 0,1 градуса. Но, такие высокоточные устройства используются в термографах сложных лабораторных стационарных установок.

Все приемы работы с тепловизором выполняются так же, как и с пирометром, но на его экране выводится картинка электротехнического оборудования, представленная уже в переработанном цветовом диапазоне с учетом состояния нагрева всех деталей.

Рядом с термическим изображением размещается шкала перевода цветов в линейку температур.

При сравнении работы пирометра и тепловизора можно увидеть разницу:

    пирометр определяет среднюю температуру в контролируемой им области;

    тепловизор позволяет оценить нагрев всех составных элементов, расположенных в наблюдаемой им зоне.

Особенности конструкций бесконтактных измерителей температуры

Описанные выше устройства представлены мобильными моделями, позволяющими выполнять последовательные замеры температуры на многих местах работы электрического оборудования:

    вводах силовых и измерительных трансформаторов и выключателей;

    контактах разъединителей, работающих под нагрузкой;

    сборках систем шин и секций высоковольтных распределительных устройств;

    в точках соединения проводов воздушных линий электропередач и других местах коммутации силовых цепей.

Однако, в отдельных случаях выполнения технологических операций на электрооборудовании сложные конструкции бесконтактных измерителей температуры не нужны и вполне можно обойтись простыми моделями, установленными стационарно.

В качестве примера можно привести метод измерения сопротивления обмотки ротора генератора при работе с выпрямительной схемой возбуждения. Поскольку в ней наводятся большие переменные составляющие напряжения, то контроль ее нагрева осуществляется постоянно.

Дистанционный замер и отображение температуры у обмотки возбуждения происходит на вращающемся роторе. Термодатчик стационарно располагается в наиболее благоприятной зоне контроля и воспринимает направленные на него тепловые лучи. Сигнал, обработанный внутренней схемой, выводится на устройство отображения информации, которое может быть оборудовано стрелочным указателем и шкалой.

Схемы, работающие по этому принципу, отличаются относительной простотой и надежностью.

В зависимости от назначения пирометры и тепловизоры подразделяют на устройства:

    высокотемпературные, предназначенные для измерения сильно нагретых объектов;

    низкотемпературные, способные контролировать даже охлаждение деталей при морозе.

Конструкции современных пирометров и тепловизоров могут оборудоваться системами связи и передачи информации через с удаленными компьютерами.

Сфера использования приборов для бесконтактного измерения температуры, так называемых пирометров, очень велика, они применяются на железнодорожном транспорте, в металлургии, энергетике, жилищно-коммунальном хозяйстве, медицине, строительстве, научных исследованиях, энергосбережении. Но нам особенно интересна именно строительная индустрия, где уже давно заметна тенденция к энергосбережению, сокращению теплопотерь зданий и сооружений.

Пирометры помогают решать эту задачу - ими удобно искать «мостики холода», участки с плохой теплоизоляцией, щели на стыках оконных и дверных блоков, диагностировать системы отопления и вентиляции бесконтактным методом. Конечно, есть и куда более удобные приборы - тепловизоры, но «частнику» они явно не по карману. А вот пирометр стоит недорого, и пусть работает он не столь наглядно, однако со своими задачами справляется.

Принцип действия любого пирометра основан на измерении мощности теплового излучения объекта измерения с любой непрозрачной поверхности, преимущественно в диапазонах инфракрасного излучения и видимого света. У IR-T1 высокий показатель визирования (10:1, на практике это означает, что на расстоянии 10 м он измеряет температуру в области диаметром 1 м) и широкий диапазон измеряемых температур, включающий и область отрицательных значений. При таких показателях его цена выглядит весьма умеренной.

Инфракрасный пирометр FLIR TG165 (бесконтактный термометр)

Разница между пирометрами и тепловизорами проста. Первые способны получить только одно значение температуры за одно измерение, а вторые сразу выдают инфракрасный снимок объекта со множеством замеренных значений. Но дело в том, что для замера температуры каждой точки нужен отдельный датчик. Сколько точек замеряется - столько датчиков и должно быть (некоторые электронные «ухищрения», которыми иногда оснащают тепловизоры, принципиально проблему не решают).

И как раз от количества датчиков, собранных в компактную матрицу, больше всего зависит цена любого тепловизора. Даже самые дешёвые их модели обходятся в десятки тысяч рублей, а профессиональные вполне могут стоить и несколько сотен тысяч. Тепловизор, даже самый простой, оснащается полноценным ЖК-экраном, может сохранять данные в памяти и подключаться к компьютеру для передачи и анализа изображений.

Температура - важный критерий при диагностике проблем у большинства типов оборудования, от печей и паровых котлов до морозильников. Если при проверке оборудования обнаруживается, что температура контролируемого объекта слишком низка или высока по сравнению с нормальным режимом работы, то это должно послужить предупреждением о возможности возникновения аварийной ситуации.

Среди методов измерения температуры можно выделить два основных: измерение температуры контактным и бесконтактным способом. Однако контактные термометры во многих случаях оказываются слишком медленными для измерения температуры в реальном масштабе времени, кроме того, объект измерения может быть расположен в труднодоступном месте. Применение портативных инфракрасных пирометров позволяет избежать этих проблем. Пирометры обеспечивают мгновенные точные измерения и предельно просты в эксплуатации. При этом отсутствует контакт с горячими поверхностями или движущимися объектами. Фактически не существует лучшей, недорогой аппаратуры для диагностики и выявления не-больших проблем до того, как они превратятся в серьезные.

Принцип действия пирометра (бесконтактного термометра) заключается в измерении силы теплового излучения, исходящего от объекта преимущественно в диапазонах видимого света и инфракрасного излучения.

Так как ассортимент предлагаемых как зарубежных, так и отечественных приборов весьма велик и, как правило, адаптирован под конкретные цели, то при выборе следует четко определиться, какой тип пирометра необходим для планируемых измерений. Стационарные пирометры дают весьма точные результаты и очень богаты функционально, однако они не предназначены для проведения измерений «на лету» и «в поле». Такие пирометры требуют калибровки и настройки, проверки на моделях АЧТ (абсолютно черное тело), и, несмотря на высокую надежность, точность и безошибочность измерений, а также удобство представления результатов, такой пирометр затруднительно всегда иметь под рукой. В условиях производства здорово выручают компактные переносные термометры, которые позволяют мгновенно получать значения температуры, причем на приемлемом уровне точности. К тому же при выборе между портативным и стационарным промышленным пирометром не последнюю роль играет цена, которая значительно выше у промышленных приборов.

Рассмотрим основные технические характеристики пирометров , на которые следует в первую очередь обращать внимание при выборе.

Первый момент - диапазон температур, величину которых планируется контролировать. Здесь в основном играет роль область применения и задачи по измерению температуры. Если необходимость использования пирометра ограничена, например, проведением энергетического аудита помещений и других измерений в условиях окружающей среды, то вполне удовлетворительным будет диапазон температур от -30 до +50 °С. Если пирометр предполагается использовать в целях контроля температуры на промышленных объектах, здесь уже нужны пирометры, способные работать с температурами, которые в несколько раз превышают указанные выше. Стоимость пирометра зависит в том числе и от данного параметра.

Второй момент, на который стоит обратить внимание, - разрешающая способность по температуре. Фактически это точность показаний пирометра, поскольку эта величина характеризует наименьшую разность температур, воспринимаемую пирометром. Обычно существует ряд второстепенных условий, влияющих на точность получаемых результатов, и степень их влияния может выражаться от сотых долей градуса до нескольких градусов.

Рис. 1. Пирометр Pro"sKit MT-4003

Рис. 2.

При выборе пирометра имеет смысл изучить такой параметр, как показатель визирования. От его величины во многом зависит цена прибора. Показатель визирования - это отношение диаметра пятна контроля прибора на объекте измерения к расстоянию до объекта и обозначается D:S. Пятно контроля - это минимальный диаметр излучающей площади, которая необходима для контроля температуры. Таким образом, пирометром с более высоким показателем визирования возможно измерение температуры объекта меньшего по своим геометрическим размерам. Для точного измерения температуры размеры объекта должны превышать размер пятна контроля прибора. Например, если пирометр имеет показатель визирования 1:100, это означает, что на расстоянии 10 м пятно контроля будет составлять всего 10 см, на расстоянии 2,5 м - 2,5 см.

Также обязательная характеристика для всех полупроводниковых приборов - диапазон рабочих температур. Этот параметр характеризует температурные условия, в которых прибор сможет функционировать нормально и изменения температуры не повлияют на метрологические качества прибора. В выборе пирометра с учетом этой характеристики следует учесть возможность калибровки прибора, предусматривающей возможность компенсации теплового удара, а также сохранение точности измерений во всем диапазоне рабочих температур при резкой смене температуры окружающей среды с субъективно теплой на холодную и наоборот.

Кроме всех вышеперечисленных характеристик имеет смысл обратить внимание на условия отображения информации. Как правило, любой современный пирометр снабжен ЖК-дисплеем, на котором отображаются данные измерения. Для непериодических замеров этого, как правило, бывает достаточно.

Что касается эргономики современных дистанционных инфракрасных термометров, то практически все они обладают удобной формой корпуса и управлением. Самая распространенная форма корпусов - пистолет. Такое исполнение прибора наиболее удобно для работы.

У большинства моделей пирометров кнопки меню и дисплей расположены к пользователю - это позволяет управлять им одним только пальцем руки. Курок в этих приборах исполняет роль кнопки «старт». В нажатом состоянии обычно производится сканирование поверхности, после отпускания срабатывает функция удержания данных на дисплее.

В таблице представлены технические характеристики недорогих бюджетных моделей пирометров четырех производителей: Pro"sKit, AXIOMET, MASTECH и HIOKI одного класса. Из особенностей рассмотренных моделей пирометров можно отметить следующие: пирометр Pro"sKit MT-4003 (рис. 1) не самый удобный в управлении. Все кнопки меню расположены на боковой части корпуса. Одной рукой будет сложно им управлять. Но поскольку на панель вынесены пять кнопок, а не три, как у HIOKI, единицу измерения температуры можно менять, не входя в меню. Еще одно немаловажное отличие Pro"sKit MT-4003 от HIOKI и AXIOMET заключается в отсутствии функции сохранения полученных измерений в память.

Таблица

Технические характеристики моделей недорогих бюджетных пирометров

Технические характеристики

HIOKI 3419-20

Pro"sKit MT-4003

AXIOMET AX-7530

MASTECH MS6530

Функция

Инфракрасный, дистанционный измеритель температуры

Прецизионное бес­контактное измерение температуры. Измерение темпе­ратуры с помощью термопары К-типа (контактный метод)

Прецизионное бес­контактное измере­ние температуры

Лазер

IEC60825-1:1993 + A1:1997 + A2:2001 CLASS 2 LASER

Лазер 2-го класса без­опасности, мощность

Лазер 2-го класса безопасности, мощ­ность

Диапазон измеряемой температуры

от -35 до +500 °C

От -30 до +550 °C

От -32 до +480 °C

(пирометр), от -50 до +1370 °C (термопара К-типа)

От -20 до +537 °C

Точность

±10% значения ± 2 °C в диапазоне от -35 до -0,1 °C ± 2 % значения, или ± 2 °C в диапазоне от 0 до +500 °C

±(2 °C/4 F) в диапазоне от -30 до +100 °C ±2 % значения в диапазоне от 101 до +550 °C

± 5 °C в диапазоне от -32 до -20 °C ± 1,5% значения, ± 2°C в диапазоне от -20 до +200 °C ± 2,0 % значения ± 2 °C в диапазоне от 200 до +480 °C

± 2,5 °C в диапазоне от -20 до +50 °C ±1,5 % значения, ±1°C в диапазоне от 50 до +537°C

Дискрета измерения

0,1 °C (0,2 F)

0,5/1 °C (автоматиче­ский выбор), 1 F

0,1 °C (0,1 F)

0,1 °C (0,1 F)

Рабочее расстояние

От 60 см до 30 м

До 12 м

Спектральная характеристика

От 6 до 14 мкм

От 6 до 14 мкм

От 8 до 14 мкм

От 8 до 14 мкм

Визирование

Лазер 1 мВт (max), красный

Лазер 1 мВт (класс 2), красный

Лазер 1 мВт (класс 2), красный

Показатель визирования

D:S = 8:1

D:S = 10:1

D:S = 13:1

D:S = 12:1

Компенсация теплового излучения

От 0,17 до 1,00 с дискретой 0,01

От 0,1 до 1,00 с дискретой 0,01

0,95

Время непрерывной работы

Приблизительно 55 ч. (марганцевая батарея). Приблизительно 80 ч. (щелочная батарея) с включенным лазером и отключенной подсветкой

Приблизительно 9 ч. при включенном лазере и подсветке

Дополнитель­ные функции

Отображение мах/min значения, функция сигнализации выхода температуры за пределы установленных границ,

подсветка дисплея, сохранение измерений в памяти (50 значений)

Отображение мах/min значения, функция сиг­нализации выхода тем­пературы за пределы установленных границ, подсветка дисплея

Отображение мах/min значения, функция сигнализации вы­хода температуры за пределы установлен­ных границ, подсветка дисплея, сохранение в память до 20 из­мерений

Отображение мах/min значения, под­светка дисплея

Габариты (Ш х В х Д)

46 х 172 х 118 мм

42 х 148 х 105 мм

56 х 175 х 118 мм

56 х 190 х 162 мм

Масса

220 г

157 г (с батареей)

290 г (с батареей)

267 г (с батареей)

Среди всех рассмотренных пирометров дисплей AXIOMET AX-7530 (рис. 2) отображает, пожалуй, больше всего параметров и установок одновременно. Коэффициент теплового излучения, текущая температура, единица измерения, индикатор лазерного прицела, индикатор заряда батареи плюс еще одна строчка с параметрами меню. На дне ручки пирометра есть разъем для подключения контактной термопары К-типа. Пирометр MASTECH MS 6530 (рис.3) отличается своими размерами. По сравнению с остальными моделями он более габаритен, ручка значительно длиннее, а дисплей намного больше. MASTECH MS 6530 обладает самой скромной функциональностью. ЭтПоказатель оптического разрешения самый большой в пирометре AXIOMET AX-7530 (13:1), а наименьший в HIOKI 3419-20 (рис. 4) (8:1).

В плане эргономики пирометры AXIOMET AX-7530 и HIOKI 3419-20, безусловно, лидируют. Приятные цвета корпуса, удобная форма и управление говорят в пользу этих моделей.

После проведения сравнения инфракрасных пирометров одного класса видно, что самый дорогой пирометр уступает по своим техническими показателями более дешевым моделям. Это можно объяснить классом прибора. Все-таки - японец! К его исполнению и функциональности нет никаких претензий.

В этом классе измерительных приборов сложно проследить зависимость стоимости от технических параметров. Ощутимая разница видна при сравнении их с профессиональными пирометрами, у которых оптическое разрешение достигает 50:1, а диапазон измерения доходит до 1250 °С и есть возможность синхронизации с ПК. Но их цена, соответственно, в разы превышает стоимость бюджетных моделей.

Измерение температуры поверхности является важным этапом при организации теплосбережения объектов, проведения ремонтных работ электронных устройств, строительных работ, различного вида контроля. Часто такого вида измерения провести термометром контактного типа не представляется возможным из-за скорости процесса, труднодоступности места измерения и т. п. Поэтому возникает потребность использовать прибор для измерения температуры бесконтактным методом. Такое устройство носит название пирометр.

Массовый выпуск пирометров начался в шестидесятых годах прошлого века. Первое переносное устройство было сконструировано и изготовлено на продажу в 1967 году, корпорацией Wahl США.

Название пирометр происходит от греческих слов жар и мерить. Это прибор, способный осуществлять измерения температуры тела бесконтактным способом. Принцип действия основан на анализе теплового излучения предмета.

При нагревании любое вещество имеет свойство излучать световые и тепловые лучи. Чем выше температура нагрева, тем сильнее излучение. Одним из видов излучения является инфракрасное. Так как яркость излучения связана с температурой, следовательно, определяя яркость, можно измерить и температуру.

Классификация устройств

Классифицируют устройства по следующим видам:

Технические параметры

  • Оптическое разрешение. Это показатель, характеризующийся отношением площади области захвата к расстоянию до вещества. Этот параметр зависит от вида прибора и может лежать в пределах от 2:1 до 600:1. Чем показатель выше, тем лучше. При использовании вне профессиональной сферы такое разрешение составляет около 15:1.
  • Диапазон работы. Зависит в первую очередь от характеристик датчиков, применённых в приборе. Его величина может лежать в границах от минус 35 до плюс 800 градусов.
  • Точность. Эта величина характеризует границы изменения температуры при замерах и зависит от правильности калибровки прибора. В среднем величина точности пирометров составляет 1.5%.
  • Коэффициент излучения. Это отношение мощностей абсолютно чёрного объекта к измеряемой поверхности, как правило, принимается около 0,95.

Вне зависимости от классификации, пирометры также могут снабжаться различными опциями. Например, возможностью подключения к персональному компьютеру, дополнительными источниками питания, запоминанию предыдущих измерений, часами, лазерным указателем, переключателем с Фаренгейта в Цельсия и т. п.

Подробные сведения об использовании имеющегося устройства можно получить из его паспорта и инструкции по применению. Укажем ниже общие рекомендации использования любого типа устройства .

Сама процедура измерения не должна вызывать затруднений. Требуется просто включить прибор, навести на измеряемый объект, нажать кнопку (курок) и прочитать на экране полученное значение.

Самостоятельное изготовление

Схемы на пирометры для измерения температуры бесконтактным методом сложны, монтаж плотный, калибровка требует наличия заводских приборов. В то время как стоимость готовых устройств в китайских интернет-магазинах приемлема для любого желающего.

Приобретая инфракрасный пирометр, следует удостовериться в том, что в наличии есть инструкция. Пирометр — это не простое устройство, поэтому самостоятельно разобраться с функциями будет проблематично. В инструкции описаны существенные пункты, необходимые для правильного использования. Приведём пример некоторых из них:

  • наличие выходов и тип программного обеспечения;
  • сведения о погрешностях;
  • коэффициент инерции;
  • возможности фокусировки;
  • температурный градиент;
  • величины рабочего спектра;
  • величина излучения.

Хотя, в принципе, его изготовление своими руками возможно. Понимая, как работает пирометр, можно собрать устройство яркостного типа. Для этого понадобится:

  1. фотометрическая лампочка;
  2. окулярная линза;
  3. светофильтр;
  4. аккумулятор;
  5. реостат;
  6. миллиамперметр;
  7. труба.

На одном конце трубы устанавливается линза, которая и будет служить объективом. В середине устанавливается лампочка, а на другом конце окуляр. Лампочка соединяется с питанием через реостат и миллиамперметр.

Измерения проводят следующим образом . Объектив зрительной трубы направляют на исследуемый объект и добиваются максимальной резкости изображения. После этого подают питание с аккумуляторной батареи и реостатом выставляют накал нити, соответствующий яркости нагретой поверхности. Далее, используя показатель миллиамперметра, вычисляют температуру. Но для этого предварительно нужно составить эталонную таблицу соответствия температуры показателям миллиамперметра.

Светофильтры служат для снижения яркости излучения при высоких температурных значениях, а также для поглощения красной части спектра. Точность измерения таким пирометром будет невысока, хотя обычно она составляет около ± 2%.

Подведя итоги, отметим, что для измерения температур в труднодоступных местах лучше применять пирометр бесконтактный, инфракрасный . Термометр такого типа характеризуется надёжностью, но позволяет измерить температуру только в отдельной точке. При измерении температур на больших участках следует применять тепловизор. Хорошо зарекомендовавшими себя производителями пирометров считаются: Testo, Optris и Raytek, на них и стоит обратить внимание.

Пирометры это приборы для определения температуры объекта бесконтактным методом. Особенностью пирометра является его невысокая стоимость. Чтобы измерить температуру объекта, необходимо направить на него прибор, в результате определяется его температура.

Виды

Пирометры классифицируются по определенным признакам, и разделяются на основные виды.

По основному принципу действия:
  • Оптические устройства, действующие в диапазонах спектра видимого света и инфракрасных невидимых лучей.

1 — Объектив
2 — Ослабляющий светофильтр
3 — Лампа
4 — Нить накаливания лампы
5 — Милливольтметр
6 — Реостат
7 — Движок реостата
8 — Монохроматический светофильтр
9 — Окуляр
10 — Кольцевая рукоятка реостата
11 — Рукоятка прибора

Принцип его работы основан на сравнении яркости излучения объекта с яркостью нити, излучение которой заранее известно. Луч света от нагретого объекта по объективу попадает в прибор. Далее по окуляру наблюдатель видит и сравнивает яркость объекта с яркостью нити температурной лампы.

Такое сравнение производят в монохроматическом свете, который создает специальный светофильтр. Нить накаливается от аккумулятора, ее накал регулируют реостатом. Температуру определяют по показанию милливольтметра пирометра, который имеет градуировку в градусах соответственно накалу нити.

  • Радиометры (инфракрасные), применяющие радиационный способ для ограниченного интервала инфракрасных лучей. Оснащаются лазерным указателем для обеспечения точности наведения.

1 — Объектив
2 — Диафрагма
3 — Лампа
4 — Медный кожух
5 — Корпус
6 — Светофильтр
7 — Окуляр
8 — Накал
9 — Милливольтметр
10 — Накал

Принцип их работы заключается в том, что тепловое излучение от нагретого объекта улавливается и фокусируется чувствительным элементом прибора, который соединен с термопарой. Прибор состоит из корпуса с объективом. Чувствительная часть пирометра выполнена в виде крестообразной платиновой пластины, к которой припаяны 4 спая термопар, выполненных в виде термобатареи.

При охлаждении или нагревании чувствительного элемента нагреваются и эти термопары. Термопары и платиновая пластина находятся в стеклянной лампе, закрытой медным кожухом, в котором есть отверстия для тепловых лучей, проходящих на чувствительный элемент. По цоколю лампы отведены концы термопар и подключены к клеммам.

При наведении пирометра необходимо добиться того, чтобы объект оказался в телескопе и закрыл поле зрения. Четкость изображения достигают передвижением окуляра. Для предохранения глаза человека от яркого света пользуются светофильтром. Он передвигается ручкой, находящейся возле клемм.

Оптические устройства также разделяют:
  • Цветовы е , мультиспектральные, действующие путем сравнения энергии яркости предмета с другими областями спектра. Они применяются минимум для двух исследуемых участков.
  • Яркостные пирометры. Их называют устройствами с пропадающей нитью. Работа основана на сравнении излучения поверхности со значением излучения нити, по которой проходит электрический ток. Величина силы тока и является значением исследуемой температуры объекта.
По методу прицеливания пирометры разделяют:
  • С лазерным прицелом.
  • С оптическим наведением.
По виду коэффициента излучения:
  • С постоянным коэффициентом.
  • С переменным коэффициентом.
По методу перемещения:
  • Переносные (мобильные), применяемые на производственных участках, где необходима мобильность измерений. Предназначены для эксплуатации в тяжелых климатических и промышленных условиях. Имеют повышенное оптическое разрешение, что позволяет определять тепловое состояние предметов размером 5 мм. Переносные устройства применяются в различных сферах промышленности для измерения температуры и слежения за сложными технологическими процессами, которые связаны с соблюдением температурного режима.

  • Стационарные пирометры, применяемые в тяжелой промышленности. Служат для постоянного контроля над процессом производства в литейном производстве металлов, а также изготовления пластиковых элементов. Их монтируют в труднодоступных местах, где нет возможности применить датчики температуры с точки зрения безопасности работников.

По рабочей температуре:
  • Высокотемпературные (более +400 градусов). Служат для измерения высоко нагретых предметов.
  • Низкотемпературные (до -30 градусов). Служат для исследования температуры тел при отрицательных величинах.
Устройство и работа

Температуру можно измерять различными устройствами, которые разделяют на контактные модели, и с дистанционным методом измерения. Пирометры относятся к приборам с дистанционным принципом действия.

Пирометр стандартного исполнения выполнен в виде пистолета. На нем имеется маленький жидкокристаллический индикатор, на котором выводится информация измеряемых параметров температуры.

Удобный корпус и панель управления, лазерное наведение и повышенная точность сделали популярным этот инструмент среди инженерно-технических работников. Дисплей прибора может быть цифровым или аналоговым. Для обеспечения необходимой точности измерения, диаметр поверхности излучения допускается не меньше 15 мм

В функции пирометра обычно включены:
  • Визуальный и звуковой сигнал при достижении определенной границы измерения.
  • Определение наибольшего и наименьшего значения среди серии замеров.
  • Встроенная память для сохранения информации.

Инновационные модели пирометров оснащены USB выходом для передачи информации на внешний носитель или компьютер.

Работа пирометра заключается в идентификации тепловых волн, излучающихся от нагреваемой поверхности. Схема прибора изображена ниже.

1 — Измеряемый объект
2 — Тепловое излучение
3 — Оптика
4 — Зеркало
5 — Видоискатель
6 — Ось видоискателя
7 — Измерительно-счетное устройство
8 — Электронный преобразователь
9 — Корпус
10 — Кнопка
11 — Датчик

Тепловое излучение поступает на датчик пирометра через раструб. В датчике энергия тепла преобразуется в сигнал электрического тока. Мощность этого полученного сигнала имеет зависимость от температуры исследуемого объекта. Чем больше температура, тем большая величина тока возникает в датчике.

Далее сигнал поступает на электронный преобразователь, который подает информацию на жидкокристаллический экран. Одной из разновидностей пирометров являются тепловизоры, которые работают по принципу сравнивания спектра излучения тепла с образцовым спектром.

На многоцветном экране появляется проекция картинки от воздействия теплового излучения объектов, попавших в зону действия прибора. С помощью параметров спектра определяют значение температуры и наглядно наблюдают ее динамическое изменение на поверхности материала. Тепловизоры стали популярными для контроля функциональности отопления жилых домов, а также выявления мест утечки теплоносителя, находящегося в скрытой области.

Технические параметры

Функционирование пирометров сопровождается своими определенными параметрами, которые учитываются при выборе модели прибора, основные из таких параметров рассмотрим подробнее.

Оптическое разрешение

Этот параметр определяет площадь исследуемого предмета для измерения температуры, и зависит от угла обзора объектива прибора, чем больше угол обзора, тем больше возможная площадь исследования, с учетом удаленности до объекта.

Основным условием выполнения точного исследования является наведение прибора именно на измеряемую поверхность. Если захват площади будет больше, то температура определится с большой погрешностью. Оптическим разрешением называется величина отношения размера (диаметра) захвата пирометра к удаленности до объекта.

Этот параметр зависит от модели устройства и колеблется в значительных пределах: от 2:1 до 600:1. Показатель с более высоким разрешением относится к профессиональным пирометрам, используемым для измерения температуры поверхностей в промышленном производстве. Для бытовых условий вполне подойдут модели пирометров с оптическим разрешением 10:1.

Рабочий диапазон

Величина диапазона работы зависит от свойств датчика прибора. Чаще всего этот параметр находится в пределах -30 +360 градусов. Для бытовых нужд вполне подойдут любые виды пирометров, так как в системе отопления наибольшая температура теплоносителя не превосходит 110 градусов.

Точность

Эта величина показывает пределы колебаний температуры при измерении, и зависит от правильности настройки прибора. Средняя величина точности пирометров равна 2%.

Коэффициент излучения

Отношение мощности излучения тепла исследуемой поверхности к мощности излучения абсолютно черного тела называют коэффициентом излучения. Черные неблестящие предметы имеют коэффициент излучения, равный 0,95. Поэтому многие приборы дистанционного измерения температуры имеют настройки на эту величину.

Однако, при попытке измерения температуры предмета, выполненного из алюминия, и отполированного до блеска, величина температуры на экране прибора будет иметь большие отличия от действительной температуры.

Для обеспечения необходимой точности исследований температурного режима большинство приборов оснащают лазерной указкой, с помощью которой пятно света находится не в центре, а определяет оптимальную границу измерения.

Правила пользования

После покупки устройства следует тщательно изучить прилагаемую инструкцию. Правила применения прибора несложные. Неправильное пользование пирометром приведет к большой погрешности измерения, или к возникновению неисправностей.

Рекомендуется следовать некоторым правилам при применении этого устройства.
  • Включить прибор.
  • Направить на исследуемую поверхность раструб.
  • Лазерной указкой определить пределы измерений.
  • После приведения прибора в рабочий режим на дисплее появится величина температуры. От конструктивных особенностей прибора зависит, будут ли сохранены данные в память пирометра или они заменятся следующими данными.

Обычный человек легко справится с практическим использованием пирометра. Для фирм, монтирующих и проектирующих автономные отопительные системы, они стали необходимым прибором.

Сфера применения

Широкую популярность пирометры приобрели на производстве с наличием оборудования теплоэнергетики: паропроводы, теплотрассы, бойлеры, различные нагревательные устройства.

Нередко пирометрами пользуются в сфере электроэнергетике для измерения элементов в распределительных щитах, кабелей и контактных соединений.

В металлургической отрасли такими приборами измеряют температуру прессов, станков, печей. В электронной промышленности его используют для замера уровня нагревания деталей и компонентов схем.

Автолюбители используют их для диагностики двигателя автомобиля. Другими сферами применения этого полезного прибора являются: определение нагрева , узлов транспортных средств, температуры при хранении пищевых продуктов.

При обследовании сооружений и жилых домов состояние функционирования отопления, кондиционирования и вентиляции, контроля холодильного оборудования пирометры являются незаменимыми помощниками.

Чаще всего пирометры применяются в особых случаях, среди которых можно назвать:
  • Оперативное измерение температуры.
  • Исследование объектов с низкой теплоемкостью.
  • Контроль элементов, к которым запрещается прикасаться.
  • Измерение нагрева миниатюрного объекта или его тонкого слоя на поверхности.
  • Особый контроль параметров нагревания определенного механизма из-за важности технологического процесса.
  • Контроль состояния элементов, функционирующих от электрической энергии, что часто используется на производстве.
  • Контроль температуры движущегося объекта особенно эффективен с помощью пирометра, по сравнению с другими устройствами.
  • Идентификация нагревания в труднодоступном месте или деталях, находящихся на значительном удалении. Пирометр поможет диагностировать необходимые параметры с необходимой точностью и на расстоянии.