Схема переделки электронного трансформатора в блок питания. Китайский электронный трансформатор TASCHIBRA TRA25


Покопавшись в интернете и прочитав не одну статьи и обсуждения на форуме я остановился приступил к разборки блока питания, надо признать китайский производитель Taschibra выпустил на редкость качественный продукт, схему которого я позаимствовал с сайта stoom.ru. Схема представлена на 105 Вт модель, но поверьте мне отличия в мощности не меняют структуру схемы, а лишь ее элементы в зависимости от выходной мощности:

Схема после переделки будет выглядеть следующим образом:

Теперь более подробно о доработках:

  • После выпрямительного моста включаем конденсатор, для сглаживания пульсаций выпрямленного напряжения. Емкость выбирается из расчета 1мкФ на 1Вт. Тем самым на мощность 150 Вт я должен установить конденсатор 150 мкФ на рабочее напряжение не менее 400В. Так как размер конденсатора не позволяет его размести внутри металлического корпуса Taschibra, через провода я вывожу его наружу.
  • При включении в сеть из за добавленного конденсатором возникает бросок тока, поэтому нужно в разрыв одного из сетевых проводов включить терморезистор NTC или резистор 4,7 Ом 5Вт. Это ограничит пусковой ток. В моей схеме уже имелся такой резистор, но после дополнительно ему я установил MF72-5D9, который извлек из не нужного компьютерного блока питания.

  • В схеме не показано, но от Компьютерного блока питания можно использовать фильтр, собранный на конденсаторах и катушках, в некоторых блоках питания он собран на отдельной небольшой плате припаянной к гнезду сетевого питания.

Если необходимо другое выходное напряжение, придется перемотать вторичную обмотку силового трансформатора. Диаметр провода (жгута из проводов) выбирается исходя из тока нагрузки: d=0.6*корень(Iном). В моем блоке использовался трансформатор намотанный проводом сечением 0,7мм² количество витков я лично не считал, так как обмотку не перематывал. Я выпаял трансформатор с платы, размотал скрутку проводов вторичной обмотки трансформатора, всего получилось 10 концов с каждой стороны:

Концы получившихся трех обмоток я соединил между собой последовательно в 3 параллельных провода, так как сечение провода так же 0,7мм2, как и провод в обмотке трансформатора. К сожалению на фото получившиеся 2 перемычки не видно.

Простая математика, намотана обмотка на 150 Вт проводом 0,7 мм2 которую удалось расщепить на 10 отдельных концов, прозвонив концы разделил на 3 обмотки каждая в 3+3+4 жилы, включаю их последовательно, в теории должен получить 12+12+12=36 Вольт.

  • Рассчитаем ток I=P/U=150/36=4.17А
  • Минимальное сечение обмотки 3*0,7мм² =2,1мм²
  • Проверим выдержит ли обмотка данный ток d=0.6*корень(Iном)=0,6*корень(4,17А)=1,22мм² < 2.1мм²

Выходит обмотка в нашем трансформаторе пригодна с большим запасом. Забегу немного вперед напряжение которые выдал блок питания по переменному току 32 Вольт.
Продолжая переделку блока питания Taschibra:
Так как импульсный блок питания имеет обратную связь по току, выходное напряжение изменяется в зависимости от нагрузки. При отсутствии нагрузки трансформатор не запускается, очень удобно если использовать по назначению, но наша цель это блок питания с постоянным напряжением. Для этого изменим схему обратной связи по току на обратную связь по напряжению.

Обмотку обратной связи по току удаляем и вместо нее на плате ставим перемычку. Это хорошо видно на фотографии сверху. Затем пропускаем гибкий многожильный провод (я использовал провод от компьютерного блока питания) через силовой трансформатор в 2 витка, далее пропускаем провод через трансформатор обратной связи и делаем один виток, что бы концы не разматывались, дополнительно протащитьчерез ПВХ как показано на фото выше. Концы провода, пропущенного через силовой трансформатор и трансформатор обратной связи, соединяем через резистор 3,4 Ом 10 Вт. К сощалению я не нашел резистора с нужными номиналом и установил 4,7 Ом 10 Вт. Этим резистором устанавливается частота преобразования (примерно 30кГц). При увеличении тока нагрузки частота становится больше.

Если преобразователь не запустится необходимо изменить направление намотки, ее проще изменить на маленьком трансформаторе обратной связи.

По мере поиска своего решения по переделке накопилось много информации по импульсным блокам питания Taschibra, предлагаю обсудить их здесь.
Отличия аналогичных переделок с других сайтов:

  • Токоограничительный резистор 6,8Ом МЛТ-1 (странно что 1 Вт резистор не грелся или автор упустил этот момент)
  • Токоограничительный резистор 5-10 Вт на радиаторе, в моем случае 10 Вт без нагрева.
  • Исключить фильтрующий конденсатор и ограничитель пускового тока по высокой стороне

Блоки питания Taschibra прошли проверку на:

  • Лабораторные источники питания
  • Усилитель мощности компьютерных колонок (2*8 Вт)
  • Магнитофоны
  • Освещение
  • Электро инструменты

Для питания потребителей постоянного тока обязательно наличие диодного моста и фильтрующего конденсатора на выходе силового трансформатора, диоды используемые для этого моста обязательно должны быть высокочастотными и соответствовать номиналам по мощности блока питания Taschibra. Советую использовать диоды с компьютерного блока питания или аналогичные им.

На сегодняшний день, электромеханики достаточно редко занимаются починкой электронных трансформаторов. В большинстве случаев, я и сам не очень заморачиваюсь тем, чтобы потрудиться над реанимацией подобных устройств, просто потому что, обычно покупка нового электронного трансформатора обходится куда дешевле, чем ремонт старого. Однако, в обратной ситуации — почему бы и не потрудиться экономии ради. К тому же не у всех есть возможность добраться до специализированного магазина, чтобы подыскать там замену, или обратиться в мастерскую. По этой причине, любому радиолюбителю нужно уметь и знать, как производится проверка и ремонт импульсных (электронных) трансформаторов в домашних условиях, какие могут возникнуть неоднозначные моменты и как их разрешить.

Ввиду того, что не все имеют обширный объём знаний по теме, постараюсь представить всю имеющуюся информацию максимально доступно.

Немного о трансформаторах

Рис.1: Трансформатор.

Прежде, чем приступить к основной части, сделаю небольшое напоминание о том, что же такое электронный трансформатор и для чего он предназначен. Трансформатор используется для преобразования одной переменной напряжения в другую (например, 220 вольт в 12 вольт). Это свойство электронного трансформатора очень широко используется в радиоэлектронике. Существуют однофазные (ток течёт по двум проводам – фаза и «0») и трёхфазные (ток течёт по четырём проводам – три фазы и «0») трансформаторы. Основным значимым моментом при использовании электронного трансформатора является то, что при понижении напряжения сила тока в трансформаторе увеличивается.

У трансформатора имеется как минимум одна первичная и одна вторичная обмотка. Питающее напряжение подключается на первичную обмотку, ко вторичной обмотке подключается нагрузка, либо снимается выходное напряжение. В понижающих трансформаторах провод первичной обмотки всегда имеет меньшее сечение, чем провод вторичной. Это позволяет увеличить количество витков первичной обмотки и как следствие её сопротивление. То есть при проверке мультиметром первичная обмотка показывает сопротивление в разы большее, чем вторичная. Если же по какой-то причине диаметр провода вторичной обмотки будет небольшим, то по закону Джоуля-Лэнса вторичная обмотка перегреется и спалит весь трансформатор. Неисправность трансформатора может заключаться в обрыве и или КЗ (коротком замыкании) обмоток. При обрыве мультиметр показывает единицу на сопротивлении.

Как проверять электронные трансформаторы?

На самом деле, чтобы разобраться с причиной поломки не нужно обладать огромным багажом знаний, достаточно иметь под рукой мультиметр (стандартный китайский, как на рисунке №2) и знать, какие цифры должен выдавать на выходе каждый из компонентов (конденсатор, диод и т.д.).

Рис 2: Мультиметр.

Мультиметр может измерить постоянное, переменное напряжение, сопротивление. Также он может работать в режиме прозвонки. Желательно, чтобы щуп мультиметра был обмотан скотчем, (как на рисунке №2), это убережёт его от обрывов.

Чтобы правильно производить прозвонку различных элементов трансформера рекомендую всё-таки выпаивать их (многие пытаются обойтись без этого) и исследовать отдельно, поскольку в противном случае показания могут быть неточными.

Диоды

Нельзя забывать, что диоды прозваниваются только в одну сторону. Для этого мультиметр устанавливается в режим прозвонки, красный щуп прикладывается к плюсу, чёрный к минусу. Если всё в норме, то прибор издаёт характерный звук. При наложении щупов на противоположные полюса не должно происходит вообще ничего, а если это не так, то можно диагностировать пробой диода.

Транзисторы

При проверке транзисторов, их также нужно выпаивать и прозванивать переходы база-эмиттер, база-коллектор, выявляя их проходимость в одну, и в другую сторону. Обычно, роль коллектора в транзисторе выполняет задняя железная часть.

Обмотка

Нельзя забывать проверять обмотку, как первичную, так и вторичную. Если возникают проблемы с определением того, где первичная обмотка, а где вторичная, то помните, что первичная обмотка даёт большее сопротивление.

Конденсаторы (радиаторы)

Ёмкость конденсатора измеряется в фарадах (пикофарадах, микрофарадах). Для его исследования тоже используется мультиметр, на котором выставляется сопротивление в 2000 кОм. Положительный щуп прикладывается к минусу конденсатора, отрицательный к плюсу. На экране должны появляться всё возрастающие цифры вплоть до почти двух тысяч, которые сменяются единицей, что расшифровывается как бесконечное сопротивление. Это может свидетельствовать об исправности конденсатора, но лишь в отношении его способности накапливать заряд.

Ещё один момент: если в процессе прозвонки возникла путаница с тем, где расположен «вход», а где «выход» трансформатора, то нужно просто перевернуть плату и на обратной стороне на одном конце платы вы увидите небольшую маркировку «SEC» (второй), которой обозначается выход, а на другом «PRI» (первый) — вход.

А также, не забывайте, что электронные трансформаторы нельзя запускать без загрузки! Это очень важно.

Ремонт электронного трансформатора

Пример 1

Возможность попрактиковаться в починке трансформатора представилась не так давно, когда мне принесли электронный трансформатор от потолочной люстры (напряжение — 12 вольт). Люстра рассчитана на 9 лампочек, каждая по 20 ватт (в сумме – 180 ватт). На упаковке от трансформатора значилось также: 180 ватт.А вот пометка на плате гласила: 160 ватт. Страна производитель – конечно же,Китай. Аналогичный электронный трансформатор стоит не более 3$, и это на самом деле совсем немного, если сравнивать со стоимостью остальных компонентов устройства, в котором он был задействован.

В полученном мной электронном трансформаторе сгорела пара ключей на биполярных транзисторах (модель: 13009).

Рабочая схема стандартная двухтактная, на месте выходного транзистора поставлен инвертор ТОР(Thor), у которого вторичная обмотка состоит из 6-ти витков, а переменный ток сразу же перенаправляется на выход, то есть к лампам.

Такие блоки питания обладают весьма значимым недостатком: отсутствует защита против короткого замыкания на выходе. Даже при секундном замыкании выходной обмотки, можно ожидать весьма впечатляющего взрыва схемы. Поэтому рисковать подобным образом и замыкать вторичную обмотку крайне не рекомендуется. В целом, именно по этой причине радиолюбители не очень любят связываться с электронными трансформаторами подобного типа. Впрочем, некоторые наоборот пытаются их самостоятельно доработать, что, на мой взгляд, весьма неплохо.

Но вернёмся к делу: поскольку наблюдалось потемнение платы прямо под ключами, то не приходилось сомневаться, что они вышли из строя именно из-за перегрева. Тем более, что радиаторы не слишком активно охлаждают заполненную множеством деталей коробочку корпуса, да ещё и прикрываются картонкой. Хотя, если судить по исходным данным, также имела место перегрузка в 20 ватт.

Из-за того, что нагрузка превышает возможности блока питания, достижение номинальной мощности практически равнозначно выходу из строя. Те более, что в идеале, с расчётом на долговременное функционирование, мощность БП должна быть не меньше, а вдвое больше необходимого. Вот такая она китайская электроника. Снизить уровень нагрузки, сняв несколько лампочек, не представлялось возможным. Поэтому единственный подходящий, на мой взгляд, вариант исправления ситуации заключался в наращивании теплоотводов.

Чтобы подтвердить (или опровергнуть) свою версию, я запустил плату прямо на столе и дал нагрузку с помощью двух галогеновых парных ламп. Когда всё было подключено – капнул немного парафина на радиаторы. Расчёт был такой: если парафин будет таять и испаряться, то можно гарантировать, что электронный трансформатор (благо, если только он сам) будет сгорать меньше чем за полчаса работы по причине перегрева.После 5 минут работы воск так и не расплавился, получалось, что основная проблема связана именно с плохой вентиляцией, а не с неисправностью радиатора. Наиболее изящный вариант решения проблемы – просто подогнать другой более просторный корпус под электронный трансформатор, который обеспечит достаточную вентиляцию. Но я предпочёл подсоединить теплоотвод в виде алюминиевой полоски. Собственно, этого оказалось вполне достаточно для исправления ситуации.

Пример 2

В качестве ещё одного примера починки электронного трансформатора я хотел бы рассказать о ремонте устройства, обеспечивающего понижение напряжения с 220 на 12 Вольт. Оно использовалось для галогенных ламп на 12 Вольт (мощность – 50 Ватт).

Рассматриваемый экземпляр перестал работать без всяких спецэффектов. До того, как он оказался у меня в руках, от работы с ним отказалось несколько мастеров: некоторые не смогли найти решение проблемы, другие, как уже и говорилось выше, решили, что это экономически нецелесообразно.

Для очистки совести я проверил все элементы, дорожки на плате, нигде не обнаружил обрывов.

Тогда я решил проверить конденсаторы. Диагностика мультиметром вроде бы прошла успешно, однако, с учётом того, что накопление заряда происходило на протяжении целых 10 секунд (это многовато для конденсаторов подобного типа), возникло подозрение, что неполадка именно в нём. Я произвёл замену конденсатора на новый.

Тут нужно небольшое отступление: на корпусе рассматриваемого электронного трансформатора имелось обозначение: 35-105 VA. Эти показания говорят о том, при какой нагрузке можно включать устройство. Включать его вообще без нагрузки (или, если по-человечески, без лампы), как уже говорилось ранее, нельзя. Поэтому я подсоединил к электронному трансформатору лампу на 50 Ватт (то есть значение, которое вписывается между нижней и верхней границей допустимой нагрузки).

Рис. 4: Галогеновая лампа на 50Ватт (упаковка).

После подключения никаких изменений в работоспособности трансформатора не произошло. Тогда я ещё раз полностью осмотрел конструкцию и понял, что при первой проверке не обратил внимания на термопредохранитель (в данном случае модель L33, ограничение до 130C). Если в режиме прозвонки этот элемент даёт единицу, то можно говорить о его неисправности и обрыве цепи. Изначально термопредохранитель не был проверен по той причине, что при помощи термоусадки он вплотную крепится к транзистору. То есть для полноценной проверки элемента придётся избавляться от термоусадки, а это весьма трудоёмко.

Рис.5: Термопредохранитель, прикреплённый термоусадкой к транзистору (элемент белого цвета, на который указывает ручка).

Впрочем, для анализа работы схемы без данного элемента, достаточно закоротить его «ножки» на обратной стороне. Что я и сделал. Электронный трансформатор тут же заработал, да и произведённая ранее замена конденсатора оказалась не лишней, поскольку ёмкость установленного до этого элемента не отвечала заявленной. Причина, вероятно, была в том, что он просто износился.

В итоге, я заменил термопредохранитель, и на этом ремонт электронного трансформатора можно было считать завершённым.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Электронные трансформаторы начали входить в моду совсем недавно. По сути, он является импульсным блоком питания, который предназначен для понижения сетевых 220 Вольт до 12 Вольт. Такие трансформаторы применяются для питания галогенных ламп 12 Вольт. Мощность выпускаемых ЭТ на сегодня 20-250 Ватт. Конструкции почти у всех схем подобного рода схожи друг с другом. Это простой полумостовой инвертор, достаточно нестабильный в работе. Схемы лишены защиты от КЗ на выходе импульсного трансформатора. Еще одним недостатком схемы является то, что генерация происходит только тогда, когда на вторичную обмотку трансформатора подключают нагрузку определенной величины. Я решил написать статью, поскольку считаю, что ЭТ может быть использован в радиолюбительских конструкциях в качестве источника питания, если внести некоторые простые альтернативные решения в схему ЭТ. Суть переделки - дополнить схему защитой от КЗ и заставить ЭТ включаться при подаче сетевого напряжения и без лампочки на выходе. На самом деле переделка достаточно проста и не требует особых навыков в электронике. Схема показана ниже, красным - изменения.

На плате ЭТ мы можем увидеть два трансформатора - основной (силовой) и трансформатор ОС. Трансформатор ОС содержит 3 отдельные обмотки. Две из них являются базовыми обмотками силовых ключей и состоят из 3-х витков. На этом же трансформаторе есть еще одна обмотка, которая состоит всего из одного витка. Эта обмотка последовательно подключена к сетевой обмотке импульсного трансформатора. Именно эту обмотку нужно снять и заменить перемычкой. Дальше нужно поискать резистор с сопротивлением 3-8 Ом (от его величины зависит срабатывания защиты от КЗ). Затем берем провод диаметром 0,4-0,6мм и мотаем два витка на на импульсном трансформаторе, затем 1 виток на трансформаторе ОС. Резистор ОС подбираем с мощностью от 1 до 10 ватт, он будет нагреваться, и достаточно сильно. В моем случае использован проволочный резистор с сопротивлением 6,2 Ом, но не советую использовать их, поскольку проволока имеет некоторую индуктивность, что может повлиять на дальнейшую работу схемы, хотя точно сказать не могу - время покажет.


При КЗ на выходе тут же сработает защита. Дело в том, что ток во вторичной обмотке импульсного трансформатора, а также и на обмотках трансформатора ОС резко спадет, это приведет к запиранию ключевых транзисторов. Для сглаживания сетевых помех на входе питания установлен дроссель, который был выпаян от другого ИБП. После диодного моста желательно установить электролитический конденсатор с напряжением не менее 400 Вольт, емкость подобрать исходя от расчета 1мкФ на 1 ватт.


Но даже после переделки, не стоит замыкать выходную обмотку трансформатора более 5 секунд, поскольку силовые ключи будут греться и могут выйти из строя. Переделанный таким образом импульсный БП включится без выходной нагрузки вообще. При КЗ на выходе генерация срывается, но схема не пострадает. Обычный же ЭТ при замыкании выхода, просто мгновенно сгорает:


Продолжая экспериментировать с блоками электронных трансформаторов для питания галогенных ламп, можно доработать сам импульсный трансформатор, например для получения повышенного двухполярного напряжения для питания автомобильного усилителя.


Трансформатор в ИБП галогенных ламп выполнен на ферритовом кольце, и по виду с этого кольца можно выжимать нужные ватты. С кольца были сняты все заводские обмотки и на их место были намотаны новые. Трансформатор на выходе должен обеспечивать двухполярное напряжение - 60 вольт на плечо.


Для намотки трансформатора использовался провод от китайских обычных железных трансформаторов (входили в комплект приставки сега). Провод - 0,4 мм. Первичная обмотка - мотается 14-ю жилами, сначала 5 витков по всему кольцу, провод не отрезаем! После намотки 5 витков делаем отвод, скручиваем провод и мотаем еще 5. Такое решение избавит от трудной фазировки обмоток. Первичная обмотка готова.


Вторичка мотается также. Обмотка состоит из 9-ти жил того же провода, одно плечо состоит из 20 витков, тоже мотается по всему каркасу, затем отвод и мотаем еще 20 витков.


Для очищения лака я просто поджег провода зажигалкой, затем очистил их монтажным ножом и вытер кончики растворителем. Должен сказать - работает великолепно! На выходе получил требуемые 65 вольт. В дальнейших статьях мы рассмотрим варианты такого рода, а также добавим выпрямитель на выходе, превращая ЭТ в полноценный импульсный блок питания, который может быть использован практически для любых целей.

При сборке той или иной конструкции иногда встает вопрос источника питания, особенно если устройство требует мощного блока питания, а без переделки его не обойтись. В наши дни найти железные трансформаторы с нужными параметрами не трудно, они довольно дорогие, к тому же большие размеры и вес – их основной недостаток. Хорошие импульсные источники питания сложны в сборке и наладке, поэтому многим они недоступны. В своем выпуске видеоблогер Aka Kasyan покажет процесс постройки мощного и особо простого блока питания на базе электронного трансформатора. Хотя в большей мере этот видеоролик посвящен переделке и увеличению его мощности. У автора ролика нет цели доработать или улучшить схему, он просто хотел показать, как можно простым способом увеличить выходную мощность. В дальнейшем, если пожелаете, могут быть показаны все способы доработки таких схем с защитой от короткого замыкания и других функций.

Купить электронный трансформатор можно этом китайском магазине .

В качестве экспериментального выступил электронный трансформатор с мощностью 60 ватт, из которого мастер намерен вытянуть целых 300 ватт. В теории все должно работать.

Трансформатор для переделок был куплен всего за 100 рублей в строймагазине.

Перед вами классическая схема электронного трансформатора типа taschibra. Это простой двухтактный полумостовой автогенераторный инвертор с цепью запуска на базе симметричного динистора. Именно он подает начальный импульс, в следствие чего схема запускается. Имеются два высоковольтных транзистора обратной проводимости. В родной схеме стояли mje13003, два конденсатора полумоста на 400 вольт, о,1 Мкф, трансформатор обратной связи с тремя обмотками, две из которых является задающим или базовыми обмотками. Каждая из них состоит из 3 витков провода 0,5 миллиметров. Третья обмотка является обратной связи по току.

На входе небольшой резистор на 1 ом в качестве предохранителя и диодный выпрямитель. Электронный трансформатор несмотря на простую схему работает безотказно. Этот вариант не имеет защиты от коротких замыканий, поэтому, если замкнуть выходные провода, будет взрыв – это как минимум.

Нет никакой стабилизации выходного напряжения, поскольку схема предназначена для работы с пассивной нагрузкой в лице офисных галогенных ламп. Основной силовой трансформатор имеет две – первичная и вторичная. Последняя рассчитана на выходное напряжение 12 вольт плюс минус пару вольт.

Первые испытания показали, что трансформатор имеет довольно большой потенциал. Потом автор нашел в интернете запатентованную схему сварочного инвертора, построенного почти по такой схеме и сразу создал плату для более мощного варианта. Сделал две платы, поскольку в начале хотел построить аппарат для контактной сварки. Все заработало без каких-либо проблем, но потом решил перемотать вторичную обмотку, чтобы заснять этот ролик, поскольку начальная обмотка выдавала всего 2 вольта и колоссальный ток. А делать замеры таких токов на данный момент нет возможности за отсутствием нужного измерительного оборудования.

Перед вами уже более мощная схема. Деталей стало даже меньше. С первой схемы взяты пара мелочей. Это трансформатор обратной связи, конденсатор и резистор в цепи запуска, динистор.

Начнем с транзисторов. На родной плате стояли mje13003 в корпусе to-220. Были заменены на более мощные mje13009 из той же линейки. диоды на плате стояли типа n4007 в один ампер. Заменил сборку с током 4 ампер и с обратным напряжением 600 вольт. Подойдут любые диодные мосты аналогичных параметров. Обратное напряжение должно быть не менее 400 вольт а ток не менее 3 ампер. Конденсаторы полумоста пленочные с напряжением 400 вольт.




После всего сказанного в предыдущей статье (смотрите ), кажется, что сделать импульсный блок питания из электронного трансформатора достаточно просто: поставить на выход выпрямительный мост, при необходимости стабилизатор напряжения и подключить нагрузку. Однако это не совсем так.

Дело в том, что преобразователь не запускается без нагрузки или нагрузка не достаточна: если к выходу выпрямителя подключить светодиод, разумеется, с ограничительным резистором, то удастся увидеть, лишь только одну вспышку светодиода при включении.

Чтобы увидеть еще одну вспышку, потребуется выключить и включить преобразователь в сеть. Чтобы вспышка превратилась в постоянное свечение надо подключить к выпрямителю дополнительную нагрузку, которая будет просто отбирать полезную мощность, превращая ее в тепло. Поэтому такая схема применяется в том случае, когда нагрузка постоянна, например, двигатель постоянного тока или электромагнит, управление которыми будет возможно только по первичной цепи.

Если для нагрузки необходимо напряжение более, чем 12В, которое выдают электронные трансформаторы потребуется перемотка выходного трансформатора, хотя есть и менее трудоемкий вариант.

Вариант изготовления импульсного блока питания без разборки электронного трансформатора

Схема такого блока питания показана на рисунке 1.

Рисунок 1. Двухполярный блок питания для усилителя

Блок питания изготовлен на основе электронного трансформатора мощностью 105Вт. Для изготовления такого блока питания понадобится изготовить несколько дополнительных элементов: сетевой фильтр, согласующий трансформатор Т1, выходной дроссель L2, VD1-VD4.

Блок питания в течение нескольких лет эксплуатируется с УНЧ мощностью 2х20Вт без нареканий. При номинальном напряжении сети 220В и токе нагрузки 0,1А выходное напряжение блока 2х25В, а при увеличении тока до 2А напряжение падает до 2х20В, что вполне достаточно для нормальной работы усилителя.

Согласующий трансформатор Т1 выполнен на кольце К30х18х7 из феррита марки М2000НМ. Первичная обмотка содержит 10 витков провода ПЭВ-2 диаметром 0,8мм, сложенного вдвое и свитого жгутом. Вторичная обмотка содержит 2х22 витка со средней точкой, тем же проводом, также сложенным вдвое. Чтобы обмотка получилась симметричной, мотать следует сразу в два провода - жгута. После обмотки для получения средней точки соединить начало одной обмотки с концом другой.

Также самостоятельно придется изготовить дроссель L2 для его изготовления понадобится такое же ферритовое кольцо, как и для трансформатора Т1. Обе обмотки намотаны проводом ПЭВ-2 диаметром 0,8мм и содержат по 10 витков.

Выпрямительный мост собран на диодах КД213, можно применить также КД2997 или импортные, важно лишь, чтобы диоды были рассчитаны на рабочую частоту не менее 100КГц. Если вместо них поставить, например, КД242, то они будут только греться, а требуемого напряжения получить от них не удастся. Диоды следует установить на радиатор площадью не менее 60 - 70см2, используя при этом изолирующие слюдяные прокладки.

C4, C5 составлены из трех параллельно соединенных конденсаторов емкостью по 2200 микрофарад каждый. Обычно так делается во всех импульсных источниках питания для того, чтобы снизить общую индуктивность электролитических конденсаторов. Кроме этого полезно также параллельно им установить керамические конденсаторы емкостью 0.33 - 0,5мкФ, которые будут сглаживать высокочастотные колебания.

На входе блока питания полезно установить входной сетевой фильтр, хотя будет работать и без него. В качестве дросселя входного фильтра использован готовый дроссель ДФ50ГЦ, применявшийся в телевизорах 3УСЦТ.

Все узлы блока монтируют на плате из изоляционного материала навесным монтажом, используя для этого выводы деталей. Всю конструкцию следует поместить в экранирующий корпус из латуни или жести, предусмотрев в нем отверстия для охлаждения.

Правильно собранный источник питания в наладке не нуждается, начинает работать сразу. Хотя, прежде чем ставить блок в готовую конструкцию следует его проверить. Для этого на выход блока подключается нагрузка - резисторы сопротивлением 240Ом, мощностью не менее 5Вт. Включать блок без нагрузки не рекомендуется.

Еще один способ доработки электронного трансформатора

Случаются ситуации, что хочется применить подобный импульсный блок питания, но нагрузка оказывается очень «вредной». Потребление тока либо очень мало, либо меняется в широких пределах, и блок питания не запускается.

Подобная ситуация возникла, когда попытались в светильник или люстру со встроенными электронными трансформаторами, вместо поставить . Люстра просто отказалась с ними работать. Что же делать в таком случае, как заставить все это работать?

Чтобы разобраться с этим вопросом давайте, посмотрим на рисунок 2, на котором показана упрощенная схема электронного трансформатора.

Рисунок 2. Упрощенная схема электронного трансформатора

Обратим внимание на обмотку управляющего трансформатора Т1, подчеркнутую красной полосой. Эта обмотка обеспечивает обратную связь по току: если тока через нагрузку нет, или он просто мал, то трансформатор просто не заводится. Некоторые граждане, купившие это устройство, подключают к нему лампочку мощностью 2,5Вт, а потом несут обратно в магазин, мол, не работает.

И все же достаточно простым способом можно не только заставить работать устройство практически без нагрузки, да еще и сделать в нем защиту от короткого замыкания. Способ подобной доработки показан на рисунке 3.

Рисунок 3. Доработка электронного трансформатора. Упрощенная схема.

Для того, чтобы электронный трансформатор мог работать без нагрузки или с минимальной нагрузкой следует обратную связь по току заменить обратной связью по напряжению. Для этого следует убрать обмотку обратной связи по току (подчеркнутую красным на рисунке 2), а вместо нее запаять в плату проволочную перемычку, естественно, помимо ферритового кольца.

Далее на управляющий трансформатор Тр1, это тот, который на маленьком кольце, наматывается обмотка из 2 - 3 витков. А на выходной трансформатор один виток, и далее получившиеся дополнительные обмотки соединяется, как указано на схеме. Если преобразователь не заведется, то надо поменять фазировку одной из обмоток.

Резистор в цепи обратной связи подбирается в пределах 3 - 10Ом, мощностью не менее 1Вт. Он определяет глубину обратной связи, которая определяет ток, при котором произойдет срыв генерации. Собственно это и есть ток срабатывания защиты от КЗ. Чем больше сопротивление этого резистора, тем при меньшем токе нагрузки будет происходить срыв генерации, т.е. срабатывание защиты от КЗ.

Из всех приведенных доработок, эта, пожалуй, самая лучшая. Но это не помешает дополнить ее еще одним трансформатором как в схеме по рисунку 1.