Как определить выходное сопротивление кв усилителя. Основные технические характеристики усилителей

Прежде чем проверять динамики, колонки или наушники, убедитесь в том, что ваш усилитель (или стационарный, или встроенный в активные колонки, или звуковой карты компьютера) имеет достаточно хорошие технические характеристики (параметры). Т.е. насколько прямолинейна и широка его АЧХ , может ли он выдавать все частоты с одинаковым уровнем, без завала по низким частотам (чем часто грешат усилители низкого качества).

Заодно можно определить, развивает ли он заявленную изготовителем максимальную мощность (Pmax) и какое выходное сопротивление (Rвых) имеет.

Методика проверки амплитудно-частотной характеристики

Для измерения амплитудно-частотной характеристики (АЧХ ) в один из каналов (левый или правый) вместо колонки в качестве нагрузки усилителя проводниками подключите, сопротивлением 5-10ом. Парал­лельно резистору подключите вольтметр пере­менного тока (цифровой в данном случае удобнее стрелочного), и, подав с компьютера сигнал генератора звуковых частот ( 22Кб.) на частоте 1000 герц регулятором громкости установите выходное напряжение, например 1вольт (1000 милли­вольт), далее, не меняя уровень сигнала, уменьшайте частоту генератора (в диапа­зоне 1000-100 герц кнопкой "-100", в диапазоне 100-20 герц кнопкой "-10") начиная от 1000гц. и до 20гц. включительно (при этом регуляторы тембра на усилителе должны стоять в среднем положении или отключены, т.е. его АЧХ должна быть прямолинейна (горизон­тальна).

Напряжение на выходе усилителя НЕ ДОЛЖНО меняться более чем на ±2 децибела (или в 1,25 раза), но чем меньше, тем лучше (в нашем случае, оно должно находиться в пределах между 0,8-1,25 вольт, или 800-1250 милли­вольт). Идеальный вариант - все частоты выдаются с одинаковым уровнем.

Ну а если завал напряжения по низким частотам составит 2 и более раз, что соответ­ствует 6 децибел и более (т.е. напряжение опустится до 0,5 вольт и менее), то ваши колонки никогда не смогут звучать во всей своей красе. К тому же, при нелинейной характеристике усилителя вы не сможете точно определить резонансную частоту динамиков. Пример такой нелинейной АЧХ показан на рисунке слева (см. синюю кривую).

Точно также проверяется и второй канал усилителя. В случае значительного спада сигнала на низких частотах желательно поменять усилитель на более качественный.

Измерение выходного сопротивления усилителя

От величины выходного сопротивления зависят коэффициент демпфирования и интер­модуляционные искажения, также оно напрямую влияет на общую добротность системы. Выходное сопротивление усилителя мощности должно находиться в пределах 1/10-1/1000 от сопротивления нагрузки и у современных усилителей имеет величину порядка 0,01-0,1 Ом.

Для его измерения в качестве нагрузки усилителя проводниками подключите, сопротивлением 4 или 8ом соответствующей мощности. Параллельно выходу усилителя подключите вольтметр переменного тока (цифровой в данном случае удобнее стрелочного), и, подав с компьютера сигнал генератора звуковых частот ( 22Кб.) на частоте 1000 герц регулятором громкости установите выходное напряжение в пределах от 1 до 5 вольт.

Вначале нужно замерить выходное напряжение усилителя на холостом ходу (без нагрузки). Потом проделать то же самое, нагрузив его на резистор. Все величины, включая Rнагр, нужно измерять как можно точнее. Выходное сопротивление вычисляется по формуле
Rвых=[(Uхх/Uнагр)-1]×Rнагр или
Rвых=[(Uхх-Uнагр)/Uнагр]×Rнагр. пример: [(5-4,9)/4,9]×8=0,163ом.

Таким образом можно определить выходное сопротивление и на втором канале, и на любой частоте.

Измерение максимальной мощности

Некоторые пользователи хотят знать, какую мощность реально выдают их усилители в нагрузку, не доверяя характеристикам, заявленным производителями. Это можно сделать, но вам понадобятся:

  1. мощный нагрузочный резистор
  2. генератор звуковых частот
  3. вольтметр переменного напряжения
  4. осциллограф.

Самое сложное, это купить или самостоятельно изготовить мощный нагрузочный резистор и найти осциллограф. В крайнем случае, в качестве осциллографа можно использовать компьютер или ноутбук с программой "Виртуальный осциллограф" из (объём 0,3 Мб.). Подробное описание его работы и схема адаптера (делитель напряжения для согласования входа звуковой карты компьютера с источником исследуемого напряжения) имеются в справке программы. Резистор можно изготовить из спирали древнего утюга, электрической плитки или тепловентилятора.

В один из каналов (левый или правый) вместо колонки в качестве нагрузки усилителя проводниками подключите, сопротивлением, соответствующим расчётному сопротивлению нагрузки вашего усилителя. Оно указывается в инструкции на аппаратуру и обычно составляет 8 или 4ом. Мощность резистора должна быть достаточной, чтобы он не сгорел во время работы, т.е. не меньше предполагаемой выходной мощности усилителя (если усилитель заявлен на 100 ватт на канал, мощность резистора должна быть 100 ватт и больше).

Параллельно резистору подключите вольтметр переменного тока (лучше стрелочный, он показывает действующее значение напряжения), а также осциллограф и, подав с компьютера сигнал генератора звуковых частот ( 22Кб.) на частоте 1000 герц регулятором громкости установите выходное напряжение, например 1 вольт (1000 милли­вольт). Наблюдайте форму сигнала на осциллографе, далее, не меняя частоту, увеличивайте амплитуду сигнала.

Синусоида будет увеличиваться по высоте, не искажая свою форму, но в какой-то момент произойдёт её клиппирование, она как бы упрётся в "потолок и пол", вместо закруглённой, её верхняя и/или нижняя части станут горизонтальными, как на рисунке справа, т.е. начнётся ограничение сигнала по амплитуде. Уменьшите амплитуду таким образом, чтобы сигнал был на грани клиппирования (ещё сохранял закругленную форму). Напряже­ние, показанное в этот момент на вольтметре, равно Umax. По формуле P=U²/R рассчитайте максимальную мощность усилителя.

Например, Umax=21v. R=4om. Pmax=21²/4=110ватт. Если R=8ом, то Рmax=55ватт.

Таким же способом можно проверить максимальную выходную мощность на нижней частоте АЧХ усилителя (20 герц.), или на нижней частоте частотного диапазона, указанного для ваших колонок, например 40, 45 или 50 герц. Ограничение синусоиды по амплитуде в идеале должно происходить строго симметрично, на обоих полуволнах сигнала.

Аналогично замерьте мощность во втором канале усилителя.

Нравится

ВЫЙТИ в оглавление

Copyright © Полубоярцев А.В.

6.3. Монтаж и исследование апериодического усилителя низкой частоты на биполярном транзисторе

В усилителях на бипо лярных транзисторах используется три схемы подключения транзистора: с общей базой, с общим эмиттером, с общим коллектором. Наибольшее распространение получила схема включения с общим эмиттером.

Напомним, что входные цепи чувствительного усилителя низкой частоты обязательно выполняются экранированным проводом.

Для исследования работы усилителя по схеме рисунка 6.6 можно собрать усилитель, используя приведенную на рисунке 6.8 монтажную плату.

При монтаже усилителя необходимо в обязательном порядке соблюдать полярность подключения электролитических конденсаторов. На монтажной схеме показана полярность подключения только одного электролитического конденсатора. Полярность подключения двух других конденсаторов определяется по принципиальной схеме усилителя. Так как на выходе генератора синусоид альных колебаний, который будут использоваться для проверки изготовленного усилителя, нет постоянной составляющей напряжения, то полярность конденсаторов при использовании транзисторов n-р-n типа должна быть такой, как показано на рисунке 6.6, а для транзистора р-n-р типа - на рисунке 6.7.

Так как электролитические конденсаторы обладают индуктивным сопротивлением, то в высококачественных усилителях низкой частоты параллельно электролитическим конденсаторам ставят керамические конденсаторы небольшой емкости.

Измерение чувствительности и номинальной выходной

мощности усилителя низкой частоты

Предварительно задают необходимое значение коэффициента гармоник на выходе усилителя. Регулятор громкости усилителя устанавливают в положение максимальной громкости, а регуляторы тембра в среднее положение. Включают в сеть все измерительные приборы и подают питающее напряжение на усилитель. Со звукового генератора через делитель напряжения на резисторах R 1 , R 2 на вход усилителя подают синусоидальное напряжение частотой 1000 Гц. Постепенно увеличивают синусоидальное напряжение на входе усилителя и одновременно измеряют коэффициент гармоник сигнала на выходе усилителя. Как только коэффициент гармоник достигнет заданного значения, измеряют напряжение на выходе усилителя U Н.ВЫХ и определяют напряжение на входе усилителя U Н.ВХ. Если отсутствует чувствительный электронный вольтметр, то напряжение на входе усилителя определяют после измерения электронным вольтметром 1 напряжения U 1 на входе делителя напряжения (на резисторах R 1 и R 2 - рис. 6.9 ).

(6.1)

При небольшой чувствительности усилителя можно обойтись без делителя напряжения, так как мешающие напряжения, возникающие при подключении к входной цепи усилителя измерительных проводов, не окажут существенного влияния на результаты измерений.

Входное напряжение U н.вх характеризует чувствительность усилителя при заданном коэффициенте гармоник на выходе усилителя. Номинальную выходную мощность на нагрузке R н определяют по формуле:

(6.2)

Коэффициент гармоник 5-8 % можно примерно определить с помощью осциллографа. При таком коэффициенте гармоник заметно искажение синусоиды на экране осциллографа. Искажение синусоиды обнаружить проще, если воспользоваться двухлучевым осциллографом и сигнал на выходе усилителя сравнивать с сигналом на входе.

Таким образом, измерить чувствительность и определить номинальную выходную мощность усилителя низкой частоты при коэффициенте гармоник сигнала на выходе усилителя 5-8 % можно приблизительно без измерителя коэффициента гармоник. Максимальную выходную мощность усилителя определяют при коэффициенте гармоник 10 %.

Измерение входного сопротивления усилителя

Входное сопротивление усилителя низкой частоты обычно измеряют на частоте 1000 Гц. Если входное сопротивление усилителя R вх значительно меньше внутреннего сопротивления используемого вольтметра, то для определения входного сопротивления усилителя последовательно с его входом включают резистор, сопротивление которого примерно равно входному сопротивлению усилителя. Два электронных вольтметра подключают так, как показано на рисунке 6.10 , где R вх - входное сопротивление усилителя. Определение входного сопротивления усилителя сводится к решению следующей задачи: известны напряжения U 1 и U 2 , показываемые вольтметрами V 1 и V 2 , сопротивление резистора R; требуется определить R вх. Так как внутреннее сопротивление вольтметра V 2 значительно больше входного сопротивления усилителя, то:

(6.3)

Если входное сопротивление усилителя окажется соизмеримым с внутренним сопротивлением вольтметра, то определять R вх таким образом нельзя.

В этом случае для определения входного сопротивления усилителя собирают приборы по схеме рисунка 6.9 , но только без измерителя коэффициента гармоник. На вход усилителя подают синусоидальное напряжение частотой 1000 Гц, не превышающее по величине номинальное входное напряжение. Измеряют входное U вх1 и выходное U вых1 напряжения усилителя и определяют коэффициент усиления напряжения К = U вых1 /U вх1 . Затем последовательно со входом усилителя включают резистор R и, не изменяя напряжения на выходе звукового генератора, измеряют напряжение на выходе усилителя U вых2 . Напряжение на выходе усилителя уменьшилось, так как при включении резистора R последовательно со входом усилителя часть напряжения с выхода генератора падает на резисторе R, а часть - на входном сопротивлении R вх. На основании законов последовательного соединения можно записать:

U вх1 = U R + U R вх (6.4)

(6.5)

Выразим U Rвх и U вх1 через напряжения на выходе усилителя

(6.6) (6.7)

Подставив (6.6) и (6.7) в (6.5) получим:

(6.8)

Из (6.8) получим выражение для входного сопротивления усилителя:

(6.9)

Для повышения точности определения R вх необходимо, чтобы сопротивление резистора R было одного порядка с входным сопротивлением усилителя R вх.

Измерение выходного сопротивления усилителя

Выходное сопротивление усилителя определяют из закона Ома для полной цепи

(6.10)

где R н - сопротивление нагрузки, R вн - внутреннее (выходное) сопротивление источника. Учитывая, что напряжение на зажимах источника U = I × R н из (6.10) получим

U = e - I × R вн (6.11)

Отключим R н, тогда ток I будет очень маленьким, следовательно, напряжение на зажимах источника U будет равно электродвижущей силе e . Подключим R н. Тогда падение напряжения внутри источника (e - U Rн) будет относиться к падению напряжения на нагрузке U Rн как внутреннее сопротивление источника относится к сопротивлению нагрузки

(6.12) (6.13)

Для более точного определения внутреннего (выходного) сопротивления усилителя необходимо взять сопротивление R н одного порядка с внутренним.

Выходное сопротивление усилителя измеряют обычно на частоте 1000 Гц. От звукового генератора на вход усилителя подают синусоидальное напряжение 1000 Гц такое, чтобы при отключенной нагрузке коэффициент гармоник сигнала на выходе усилителя не превышал заданного для данного усилителя значения.

Для определения выходного сопротивления R вых измеряют выходное напряжение усилителя дважды. При отключенной нагрузке выходное напряжение будет равно ЭДС, а при подключенной - U Rн.

Выходное сопротивление усилителя определяют по формуле

(6.14)

Построение амплитудной характеристики

Важную информацию о качестве усилителя можно получить из амплитудной характеристики. Для снятия амплитудной характеристики собирают приборы по схеме рис. 6.9 , исключив измеритель гармоник. Со звукового генератора на вход усилителя подают синусоидальное напряжение частотой 1000 Гц такое, чтобы стало заметным отличие сигнала на выходе усилителя от синусоидального. Полученное значение входного напряжения увеличивают примерно в 1,5 раза и измеряют выходное напряжение усилителя электронным вольтметром. Полученные значения входного и выходного напряжения усилителя дадут одну из точек (крайнюю) амплитудной характеристики усилителя. Затем, уменьшая входное напряжение, снимают зависимость выходного напряжения от входного. Из амплитудной характеристики усилителя легко определяется коэффициент усиления по напряжению К=U вых /U вх. Входное и выходное напряжения усилителя для определения коэффициента усиления необходимо выбирать на линейном участке амплитудной характеристики. В этом случае коэффициент усиления усилителя не будет зависеть от входного напряжения.

Измерение уровня собственных шумов усилителя

Для определения уровня собственных шумов усилителя измеряют выходное напряжение усилителя, подключив к входу усилителя резистор, сопротивление которого равно входному сопротивлению усилителя. Уровень собственных шумов усилителя выражают в децибелах – формула (5.6). Для уменьшения влияния наводок от внешних электромагнитных полей входные цепи усилителя тщательно экранируют.

Определение коэффициента полезного действия усилителя

Коэффициент полезного действия усилителя определяют при подаче на вход синусоидального напряжения частотой 1000 Гц соответствующего номинальной выходной мощности. Определяют номинальную выходную мощность по формуле (6.2)

Мощность, потребляемую усилителем от источников (источника), определяют по формуле P 0 =I × U , где I - ток, потребляемый от источника, U - напряжение на клеммах усилителя, предназначенных для подключения источника питания (схему подключения амперметра и вольтметра выбирают с учетом минимальной погрешности определения потребляемой усилителем мощности в зависимости от имеющихся в наличии амперметра и вольтметра).

Определение диапазона усиливаемых частот

Для определения диапазона усиливаемых частот и коэффициента частотных искажений строят частотную (амплитудно-частотную) характеристику.

Из определения амплитудно-частотной характеристики усилителя следует, что для ее построения на вход усилителя можно подавать любое напряжение, соответствующее линейному участку амплитудной характеристики. Однако при слишком маленьких входных напряжениях могут появиться погрешности, обусловленные шумами и фоном переменного тока. При больших входных напряжениях могут проявиться нелинейности элементов усилителя. Поэтому амплитудно-частотную характеристику обычно снимают при входном напряжении, соответствующем выходной мощности, равной 0,1 от номинальной.

Приборы для снятия амплитудно-частотной характеристики собирают по схеме рис. 6.9 , причем измеритель гармоник и осциллограф можно не подключать.

Диапазон усиливаемых частот определяется из амплитудно-частотной характеристики с учетом допустимых частотных искажений. Амплитудно-частотная характеристика усилителя - это зависимость коэффициента усиления по напряжению от частоты. Из рис. 5.5 видно, как определить диапазон усиливаемых усилителем частот (полоса пропускания) при уменьшении коэффициента усиления на граничных частотах до 0,7 от максимального, что соответствует коэффициенту частотных искажений 3 дБ.

Выходное сопротивление можно определить двумя способами.

1) Отключить сопротивление нагрузки. Замкнуть активный источник входного сигнала. Подвести к выходным зажимам усилителя переменное напряжение . Рассчитать переменный ток , потребляемый от источника . Определить выходное сопротивление усилителя . Схема замещения усилителя, реализующая этот способ, приведена на рис.2.11.

Рисунок 2.11 - Схема замещения усилителя, для расчета R Вых

2) Определение выходного сопротивления по нагрузочной характеристике.

Выходную цепь усилителя можно представить следующей моделью, в которой выходная цепь транзистора представлена источником ЭДС (Рис. 2.12).

Рисунок 2.12 - Схема замещения выходной цепи усилителя

Нагрузочная характеристика усилителя, определяется зависимостью напряжения на нагрузке от тока нагрузки, будет иметь вид, приведенный на рис.2.13.

Рисунок 2.13 - Нагрузочная характеристика усилителя

Для выходной цепи усилителя в режимах холостого хода (R Н =¥) и короткого замыкания (R Н =0) определим значения U Нхх и I КЗ :

Из нагрузочной характеристики следует, что выходное сопротивление усилителя:

При условии, что , можно записать: .

Следовательно, результаты определения выходного сопротивления, полученные первым и вторым способами, одинаковы.

Поскольку входное и выходное сопротивления схемы с ОЭ соизмеримы, то возможно последовательное включение каскадов усилителей с ОЭ при их удовлетворительном согласовании. Так, например, для двухкаскадного усилителя с коэффициентами усиления К 1 и К 2 и равенством R Вых1 =R Вх2 , получим общий коэффициент усиления усилителя .

Выводы:

Схема усилителя напряжения (ОЭ) имеет примерно равные входное и выходное сопротивления, что позволяет согласовывать по напряжению входное сопротивление последующего каскада с выходным сопротивлением предыдущего при их последовательном включении в многокаскадных усилителях. Схема с ОБ не позволяет выполнять такое включение, так как . Для последовательного включения каскадов с ОБ между ними необходимо включать согласующие каскады, которые строятся по схеме с ОК (см. разд.2.3).

Коэффициенты усиления схем с ОЭ и ОБ по напряжению K U >>1 (десятки) и отличаются лишь фазовыми соотношениями j ОЭ =180°, j ОБ =0°.

Коэффициенты усиления по току для схемы с ОЭ (K I >>1), а для схемы с ОБ (K I <1). Поскольку коэффициент усиления по мощности K P =K U ×K I , то схема с ОЭ имеет наибольший коэффициент.

Схема усилителя напряжения с ОЭ находит более широкое применение в электронике, однако схема с ОБ, несмотря на ряд указанных недостатков, используется в соответствии со своими преимуществами. К ним следует отнести наиболее высокую температурную стабильность и меньшие нелинейные искажения (см. разд. 5).


8 ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ RC-УСИЛИТЕЛЕЙ
ЗВУКОВЫХ ЧАСТОТ

Думаю многим известно, что если на заведённом автомобиле включить дальний свет, печку, обогрев заднего стекла, то напряжение, вырабатываемое генератором, уменьшится, ещё в таком случае говорят, что напряжение просело. Как это относится к электронике? В электронике все происходит по тому же сценарию, если подключить к генератору сигналов, какую-то низкоомную нагрузку, то напряжение на его выводах уменьшится, причиной этому в обоих случаях является внутренне сопротивление генератора, которое обычно изображают в виде последовательно включённого с генератором резистора. Эквивалентная схема генератора изображена на картинке ниже.

Почему эквивалентная? Потому что на самом деле физически резистора, изображённого на картинке, нет, как минимум, в автомобильном генераторе, но для того, чтобы учесть процессы, происходящие внутри генератора или усилителя, а также в других схемах, удобно описывать их таким образом.
Давайте перейдём к практике, измерять будем выходное сопротивление генератора сигналов.
Сначала подключим осциллограф к выводам генератора сигналов как изображено на картинке ниже и посмотрим чему будет равно напряжение.



На осциллограмме видно, что амплитудное значение напряжения равно 1 V.
Теперь давайте подключим к выводам генератора сигналов, потенциометр и будем крутить его, пока напряжение на концах генератора, не станет равно половине от измеренного ранее, то есть 0,5 V.



При сопротивлении 51 Ohm, падение напряжения на потенциометре стало равно половине напряжения холостого хода.
Если посмотреть на картинку выше, то можно увидеть, что внутренне сопротивление генератора и подключённого нами потенциометр, образуют делитель напряжения и падение напряжения на одном его плече равно половине напряжения генератора, значит, на второе плечо остаётся ровно половина напряжения. Так как падения напряжений на внутреннем сопротивлении и на подключённом нами потенциометре равны, это значит что и внутреннее сопротивление генератора равно сопротивлению потенциометра, то есть 51 Ohm.
Но бывают случаи когда, нет возможности измерить напряжение генератора на холостом ходу, то есть без нагрузки, в таком случае производят два замера с разными сопротивлениями и по формуле, изображённой ниже, вычисляют сопротивление генератора.


Формула выводится следующим образом, сначала рассчитывается напряжение на R1 и R2, так же как обычный делитель. В обоих полученных формулах будет присутствовать напряжение генератора, выражаем его из каждой формулы и приравниваем другие части. Далее надо просто выразить Rг и на этом расчет окончен.
Теперь мы знаем как измерить выходное сопротивление генератора.