Усилитель на транзисторах: виды, схемы, простые и сложные. Усилительный каскад на транзисторах Схема с фиксированным напряжением на базе

Чем проще конструкция, тем больше в ней простора для творчества. Схема двухкаскадного усилителя вылизана до блеска, но вы можете «приправить» звучание по собственному вкусу.

СВЯТАЯ ПРОСТОТА

Этот материал, в отличие от большинства других, редакцией не заказывался, а пришел «самотеком» по e-mail. Поэтому традиционного представления автора - с портретом и комплиментами - не будет. Уверены, что по прочтении оного в вашем воображении портрет нарисуется сам собой, а уж насчет комплиментов решайте сами.

Intro

Вообще-то, звук - дело вкуса. От схемы я старался добиться нейтральности, детальности и ровных на слух тембрального и частотного баланса, как исходной посылки для дальнейших процедур. Что-то вроде чистого холста.

Под детальностью я подразумеваю передачу тонких оттенков тембров, реверберации, естественности затухания звуков, послезвучия… Она же, детальность, проявляется в натуральности передачи и естественности динамики хорошо знакомых нам звуков, впитанных нами с детства.

Что же касается музыки, то здесь, особенно на неважно сделанных записях, иногда хочется что-нибудь подкрасить или, наоборот, замазать. Вплоть до установки переключателя «мягко - нейтрально - динамично».

В результате все решения окончательно выбирались (или отбраковывались) путем прослушивания. Это мой усилитель, и звучит он так, как я считаю должным. Без претензий на Абсолют(ность)…

В тоже время я особо не «затачивался» на том, что схема не потерпит вольного вмешательства и никак не подойдет «чайникам» с необременительным достатком. Но, несмотря на внешнюю простоту, схема усилителя вылизывалась долго - несколько лет. Её возможности раскроются только с хорошими источником и акустикой.

На мой слух усилитель вышел из-под паяльника достаточно прозрачный, чтобы получить любой желаемый тип звука путем подбора соответствующих деталей . Если кто-нибудь из вас или ваших знакомых хотя бы попробует первый каскад (собственно, вся изюминка в нем!) в максимально строгом окружении - было бы совсем здорово! А то ссылки на восторженные отзывы только одного человека, к тому же автора схемы - это не совсем убедительно.

В первую очередь, это анодный резистор первого каскада и межкаскадный конденсатор. Ну, и остальные компоненты тоже что-то значат…

Часть 1

Вот и начали! Входной сигнал поступает на сетку лампы Л1 через антизвонный дроссель Др1. Выбор дросселя вместо традиционного резистора объясняется, прежде всего, его лучшими звуковыми свойствами в сравнении с обычным резистором. Также следует отметить, что лампа 6С17К проявляет неустойчивость на ВЧ. Дроссель устраняет автогенерацию, не внося заметных искажений. Конечно, применение обычного резистора 1 кОм эту проблему тоже снимает, но слегка портит звук.

Первый каскад построен по схеме с фиксированным смещением. Построение схемы определялось следующим «техзаданием»:

Отказ от шунтирующего конденсатора в цепи катода;

Отказ от нежелательной ООС в той же цепи через «классический» резистор;

Отказ от первого переходного конденсатора;

Работа от источника музыкального сигнала с нулевой постоянной составляющей на выходе.

Таким образом, нельзя было возложить задачу организации сеточного смещения на источник сигнала. Была разработана и опробована схема с катодным резистором очень маленького номинала (от долей до единиц Ом), необходимое падение напряжения на котором получалось не за счет тока катода лампы, как в классической схеме, а за счет подачи на этот резистор большого тока от отдельного источника. На практике таким источником явился стабилизатор накала +6,5 В.

Первоначально нужный ток задавался внешним резистором, номинал которого определялся из необходимого напряжения смещения на катоде. В конкретной же схеме оказалось возможным воспользоваться током накала самой лампы 6С17К-В (300 мА), тем более что один из выводов нити накала соединяется с катодом внутри лампы. Было много сомнений по поводу качества работы схемы, были опасения по поводу пролезания помех из стабилизатора накала в усиливаемый сигнал, но всё оказалось хорошо.

Стабилизатор накала не представляет собой ничего особенного: мостовой выпрямитель на диодах с малым падением напряжения, электролитический конденсатор 10000 мкФ/16 В и стабилизатор 7806 с кремниевым диодом, соединенный последовательно с общим выводом для повышения напряжения с 6 до 6,5 В.

Звучание оказалось однозначно лучше, чем в схемах с сеточным входным и/или шунтирующим катодным конденсатором независимо от качества этих конденсаторов. В течение года я два раза возвращался к «классическим» схемам с конденсаторами в указанных местах и всегда убеждался в их ущербности.

Нежелательная ООС на катодном резисторе также практически отсутствует благодаря малости его номинала.

Не стану настаивать на абсолютной новизне этого решения, но пусть кинет в меня камень тот, кто найдет другую схему усилителя с таким вот выкрутасом!

Часть 2

Лампы на входе в принципе при «обычных» условиях можно использовать любые с небольшим напряжением смещения. Ток смещения в этом случае лучше задавать отдельным резистором, а не прогонять его через накал, как это сделано у меня. Но на звучании это не скажется - проверено. Я перепробовал всевозможные лампы, начиная от 6С2П, 6С3П и кончая экзотикой типа нувисторов 6С53Н или сверхминиатюрных триодов, но усиления всё равно остро не хватало. Попутно я выяснил, что разрекламированная лампа 6С45П в самом деле не так уж и хороша - звук мутный и смазанный. А вот 6С3(4)П замечательна, а нувисторы просто великолепны! По опыту друзей и знакомых могу также сказать, что для 2С4С с традиционным входом можно остановиться на 6Ж4 (зарубежные аналоги - 6АС7, 6F10, 6AJ7) в триодном включении и межкаскадном трансформаторе.

Можно и с большим смещением, типа 6H8C, но напряжение вспомогательного источника придется поднять вольт до 30, что неудобно.

Мой же окончательный выбор лампы для входного каскада был обусловлен несколькими требованиями. Во-первых, хотелось ограничиться простой двухкаскадной схемой усилителя. Во-вторых, получить при этом чувствительность не хуже 0,15 - 0,2 В, поскольку предполагалась работа входного каскада усилителя непосредственно с сигналом, пришедшим с токового выхода ЦАПа.

ЦАП очень простой: преобразователь AD1860, токовый выход которого идет на резистор 619 Ом. Именно этот резистор обозначен на схеме как R1. Без фильтров. Коробка ДАКа (бывший DAC-in-BOX Audio Alchemy) размещена прямо в корпусе усилителя, провода из коробки выведены к входной лампе, и тут же распаян резистор R1. Идея была такая: как можно дальше уйти от ЦАПа током, чтобы быть нечувствительным к нелинейностям контактов и паек, и распаять резистор преобразователя I-U прямо у входной лампы. Кстати, резистор безвыводной типа С6-9 размерами примерно 1 х 1 х 1,5 мм.

И тут в справочнике обнаружилась ранее мне неведомая лампа 6С17К-В. Сначала я пролистнул её не глядя, решив, что это очередное генераторное изделие с «правой» характеристикой. К тому же соединение накала и катода внутри баллона делало её непригодной практически для всех стандартных включений, чем и объясняется, видимо, её полное отсутствие в звукоусилительных схемах. Невозможность установки этой лампы в панельку, видимо, также отпугивала от неё усилителестроителей. И последний гвоздь в крышку был забит смехотворной цифрой наработки 200 часов, если верить справочнику.

Но потом разум возобладал, и выяснились следующие вещи:

  1. Лампа идеально подходит к моей схеме организации смещения.
  2. Коэффициент усиления порядка 150 - 180 позволяет добиться вожделенной чувствительности при двух каскадах.
  3. Долговечность по вкладышу к этой лампе в действительности составляет 2000 часов, а с учетом недогрузки её по мощности (1,2 Вт при максимальных 2-х) и пониженного напряжения накала (5,7 В, как нетрудно вычислить, глядя на схему), можно ожидать, что её ресурс окажется не хуже, чем у электролитических конденсаторов.
  4. Прямой монтаж благотворно сказывается на звуке из-за отсутствия лишних контактов, проводов и паек.
  5. В реальной схеме лампа весьма линейна, и конкретно в моей схеме имеется запас в 6 - 8 дБ по перегрузке до появления слышимых искажений. Тем более об этом можно судить при таком, как у меня, включении регулятора громкости, но это некоторое забегание вперед.
  6. Имеется ложечка дегтя: у ламп большой разброс по параметрам…
  7. …но ещё ведро мёда: лампа не страдает микрофонным эффектом, несмотря на большую крутизну (10 мА/В) и коэффициент усиления под две сотни.

Да, с винилом она не потянет, да и с хорошим магнитофоном тоже - нет запаса по входу. Даже, в общем-то, впритык, и для ЦАПа и усиление бешеное. А есть еще входные трансы… Но, несмотря на кажущуюся хилость 6С17К-В в качестве драйвера, все обстоит гораздо лучше, чем можно было предположить. Неустойчивости режима 2С4С мною не замечено. Выходное сопротивление регулятора громкости - максимум 25 кОм в среднем положении, достаточно малая величина. Да и никто не мешает уменьшить резистор утечки хоть в десять раз с соответствующим увеличением межкаскадной емкости. В конце концов, речь идет о конкретной и рабочей схеме.

Так что моя попытка создать «шведскую семью» между 6С17К-В, ЦАПом и 2С4С оказалась вполне успешной! И вот сейчас, пока вы читаете эти строки, все работает себе замечательно. Причем без слышимых искажений, несмотря на полный размах на входе. Каждый вечер слушаю. Вероятно, справочные данные и реальность, как и в Одессе, это две большие разницы.

Впрочем, ещё раз повторю, что, если не требуется такое усиление, вполне можно поставить что-нибудь более традиционное, почти не меняя схему. Если кто-то из вас соберется ею воспользоваться, он, разумеется, внесет в неё изменения в соответствии со своим видением и запросами. В таком случае лучше перенести регулятор громкости на привычное место - на вход. И все дела - пойдет с любым источником!

Часть 3

Усиливаемый сигнал снимается с резистора анодной нагрузки R2, лампы Л1 и идет на регулятор громкости, выполненный на переменном резисторе R4.

Предварительно мною были рассмотрены три варианта включения регулятора громкости:

  1. Параллельно анодному резистору R2. Недостатки очевидны: при регулировке происходит кратковременное изменение режима усилителя по постоянному току, и практически наверняка в звуковой сигнал будут пролезать шорохи от движка. К тому же меня повергло в беспокойство мнение Серёжи Рубцова о недопустимости подачи на этот тип резистора сколько-нибудь существенного постоянного смещения.
  2. Резистор заземляется через развязывающий конденсатор. Так и сделано в моей схеме. В качестве развязывающего применяются Black Gate (С2), шунтированные фторопластом (С3). Наблюдается некоторое снижение максимального размаха напряжения, что нетрудно компенсировать повышением напряжения питания. Вот почему оно на первом каскаде выше, чем на втором.
  3. Резистор заземляется напрямую. Недостатки аналогичны п. 1. При этом за счет образования делителя R2/R4 резко снижается максимальный размах напряжения первого каскада. Не пойдет, хотя отсутствие конденсатора теоретически могло бы улучшить звук.

Фирма «ЭРАудио» (бывш.«НЭМ»), г. Новосибирск. - Прим. ред.

Вынос регулятора из входных цепей в середину схемы объясняется просто: слишком сильно его негативное влияние на звук, несмотря на дороговизну и попытки включить его по схеме Г-регулятора. Бескомпромиссное построение первого каскада как бы вытеснило регулятор громкости в сильноточные участки схемы. Сразу скажу, что такое построение возможно только при гарантии отсутствия перегрузок по напряжению первого каскада. Это не составляет проблем при цифровом источнике (выше 0 дБ не прыгнешь), но, например, с магнитофоном аккуратность потребуется. С винилом же или произвольным источником придется возвращать регулятор на стандартное место в начало схемы либо предусмотреть для таких источников регулируемый (или нерегулируемый) аттенюатор на соответствующем входе.

Если для конденсатора анодного питания первого каскада С1 шунтирование не требуется, то для C2 оно желательно. Я объясняю это так: малое внутреннее сопротивление лампы Л1 (несколько кОм) с большим сопротивлением анодной нагрузки R2 образуют делитель, который эффективно отсекает от усиливаемого сигнала возможные пакости со стороны конденсатора С1. То есть сигнал в основном определяется лампой.

В случае положения регулятора в начале сектора влияние С2 может оказаться существенным. Практика показала, что так оно и есть. Даже Black Gate не идеальны! Влияние проявляется в первую очередь в слабой, но заметной резковатости верха, а также в некотором их завале. По мере разогрева (не «эзотерического» , а самого что ни на есть температурного) примерно в течение часа эти эффекты существенно слабеют, и звучание улучшается и заметно «натурализуется».

Возможно, следовало бы применить серию «K/FK» конденсаторов Black Gate, специально предназначенную для использования в аудиоцепях и отличающуюся низкими шумами менее 150 дБ. - Прим. ред.

«Эзотерический» разогрев конденсатора связан, прежде всего, с процессом формовки, который происходит каждый раз в той или иной степени после подачи напряжения на электроды. - Прим. ред.

Почему это так, можно посмотреть у Клауса (www.klausmobile. narod.ru). У него есть ссылка на исследования нелинейностей и потерь конденсаторов, где очень наглядно показано, насколько (во сколько раз!) улучшаются характеристики электролитических конденсаторов при нагреве.

Выбор типа шунтирующего конденсатора - вопрос ещё до конца мною не решенный, но он не велик: либо фторопласт, либо бумага - масло. Может быть, ещё и слюда. И всё. Никакие прочие пленки «не катят» - это я уже понял. Вопрос с «маслом» не решен по причине отсутствия нужных конденсаторов у меня. Эксперименты не закончены, процесс идет…

Часть 4

С регулятора громкости через разделительный конденсатор С4 сигнал поступает на сетку 2С4С. Антизвонный резистор отсутствует, поскольку мои эксперименты показали его полную ненужность. Построение второго каскада не имеет особенностей, разве что вместо мощного переменного резистора для организации искусственной средней точки в катоде для минимизации фона применены два постоянных резистора. Опыт показал, что вполне достаточно использовать постоянные резисторы с допуском не хуже 1%. Высокое качество такого решения очевидно, и проблем с фоном, по крайней мере, с 2С4С, не наблюдается.

Тип резисторов здесь не очень критичен. Они могут быть проволочными, металлопленочными прецизионных типов. Надо избегать лишь углерода и всяких МЛТ. Малый номинал при малом же коэффициенте усиления и крутизне 2С4С не создают существенной ООС на этих резисторах, что, в свою очередь, не требует применения специальных мер для удавления этой ООС.

Можно заметить, что лампы в моей схеме используются с некоторой перегрузкой по мощности на аноде. Это от жадности, не обращайте внимания, тем более что за год с лишним лампам ничего не сделалось.

Резисторы R8, R9 и R10 предназначены для отсечения от усилителя возможных нелинейностей выходных конденсаторов блока питания. Опять же это объясняется образованием делителя, состоящего из внутреннего сопротивления Black Gate в усилителе (не более десятков мОм) и собственно вышеуказанных резисторов. Кроме того, эти резисторы существенно ослабляют индуктивные помехи, которые могут появляться при образовании внешних замкнутых петель соединительных проводов. Специальных экспериментов по выявлению влияния этих резисторов на звучание я пока не проводил.

В конце малоутомительного пути сигнал с анода 2С4С попадает на первичку выходного трансформатора, из особенностей которого можно отметить лишь исключительно высокое качество и очень «плохую» цену. Качество его я оцениваю очень просто: он совершенно «прозрачен» для звука, его присутствие в тракте незаметно. Любые, даже самые незначительные изменения в схеме, включая лишние пайки и даже перемещение монтажного провода, сразу становятся слышны в моих АС.

Если внимательно посмотреть на схему, то можно заметить, что общий провод накала первого каскада и общий вывод конденсаторов С6 + С7 не присоединяются непосредственно к общей точке. Это не случайно, но о причинах пока умолчу. Должны же остаться какие-то тайны…

О вкусной и здоровой пище

Блок питания я сделал выносной с раздельным питанием накала, предварительных цепей и оконечного каскада. Он присоединяется к усилителю через громадный армейский разъём с посеребрёнными пластинчатыми контактами. Все основные напряжения блока, кроме накальных, регулируются, для чего применены простейшие стабилизаторы на полевых высоковольтных транзисторах. Да не ругайтесь вы, что БП диодный! Зато с принятыми мерами по помехоподавлению вообще и снижению помех от диодов в частности.

«…Если у тебя раздельные источники питания для первого и второго каскада, то можно довольно просто обойтись и без разделительного конденсатора. Цепляешь сетку выходной лампы прямо на анод входной (там постоянный потенциал +200 вольт), а от слаботочного источника питания - от которого питается первый каскад, - с помощью высокоомного резистивного делителя получаешь потенциал +245 вольт, и к этой точке цепляешь катод первой лампы. Мощное же питание, благо оно изолировано, цепляешь минусом на катод выходной лампы, а плюсом - на «холодный» конец трансформатора. В результате избавляешься от переходного конденсатора и всей цепи фиксированного смещения. Добавляется два резистора и высоковольтный (к сожалению) конденсатор, шунтирующий «земляное» плечо резистивного делителя. Примененный тобой способ регулирования громкости уместен и в данной конфигурации». - Прим. сочувствующего Андрея из Интернета.

На выходе БП стоят «мягкие» стабилизаторы по простейшей схеме: полевик в режиме повторителя, в цепи затвора - полупроводниковый стабилитрон. Выход стабилитрона через последовательный резистор подцеплен на большую емкость, присоединенную вторым концом к общему проводу - она дает плавный старт и добивает возможные пульсации-помехи-шумы. Параллельно конденсатору стоит переменный резистор, движок которого и подключен к затвору. Всё!

Диоды выпрямителя импульсные высоковольтные. Сюда подойдут любые, предназначенные для импульсных блоков питания с допустимым обратным напряжением не меньше утроенного выпрямленного. Сейчас на любом радиорынке всё это легко найти. Конкретно К20-39 просто были под рукой.

Последовательно с диодами стоят резисторы 10 Ом, параллельно диодам (параллельно каждому) керамическая емкость 0,1мкФ. На входе выпрямителя расположена емкость 0,1 мФ, на выходе - 1,0 мкФ.

Накальный трансформатор - ТПП 304, анодный слабосильный (для питания предварительного каскада) - ТА 84-220-50, анодный сильносильный - ТС180. Анодные трансформаторы включены в сеть через помехоподавляющий фильтр. В результате усилитель получился совершенно нечувствительным к помехам от сети, даже к щелчкам старого холодильника.

Выковырян из монитора, представляет собой C-L-C фильтр.

В планах у меня заказ либо покупка фирменных забугорных трансформаторов, а то отечественные изделия не вызывают доверия - гудят.

Можно и заказные «Электрон-Комплекс» попробовать. - Прим. ред.

Конечно же, мною был изготовлен макет блока питания на кенотронах 5Ц3С и 6Ц4П. Ну куда же я без этого! Как это ни крамольно, но в моей схеме он не показал заметных преимуществ перед полупроводниковым БП. Возможно, дело в том, что в обоих БП использовались большие выходные емкости по 470мкФ, а от помех диодного моста мне удалось эффективно избавиться. К тому же стабилизатор, будучи просто истоковым повторителем, совершенно равнодушен к переменчивости нагрузки. Так что пришлось засунуть кенотронный БП подальше и забыть про него, поскольку напряжение в розетке у меня свободно разгуливает от 170 до 220 В. В любом случае благодаря нашей военной промышленности смена блоков занимает минуту.

Часть 5

В звуковом отношении схема оказалась весьма чувствительна к качеству монтажа и количеству паек, причем настолько, что пришлось катодную цепь радикально минимизировать: катодный резистор одним выводом припаян прямо к ножке лампы, другим - к общей точке схемы. Монтаж входного каскада и цепей регулятора громкости сделан серебряной моножилой Jensen диаметром 0,8 мм. Все остальные цепи - медным проводом.

Также данная схема весьма чувствительна к типу катодного резистора. Углеродные, в том числе и БЛП, здесь оказались просто отвратительны, проволочные удовлетворительны, но не более того. ПТМН мне вообще не очень понравились, хотя набрал я их для экспериментов чудовищное количество. Как настроечный же элемент для получения желаемой окраски звука усилителя в целом катодный резистор непригоден.

Анодный резистор первого каскада - вот идеальный элемент для необходимой подкраски звука усилителя! Выбор типа этого резистора оказывает прямое влияние на звук.

Сейчас у меня это танталовый фольговый резистор, но я так и не смог сделать окончательный выбор между ним и Riken Ohm. Звук у них разный: Riken Ohm дает очень красивый окрас середины, какую-то особую динамику, смягчая верх и чуть смазывая детальность, а тантал стерилен и очень детален.

Как раз с танталовыми резисторами меня и подстерегла засада. Примерно год назад, излившись в Интернете (www.dvdworld.ru/cgi-bin/audiobbs.pl) мыслями по поводу звуковых качеств разных резисторов, я забраковал тантал. Но позднейшие мои изыскания показали, что это была ловушка, от попадания в которую я сам же и предостерегал. Дело в том, что хороший компонент может показаться «плохим», если в результате его установки в схему проявятся недостатки других узлов тракта. И резкость звука, которая мне тогда казалась свойством тантала, в действительности оказалась недостатком моего тогдашнего ЦАПа. Сейчас же справедливость восторжествовала, но звук Riken Ohm мне всё равно нравится.

В утечку первого каскада лучше что-нибудь пленочное - хорошее и прецизионное. Про прецизионные резисторы я говорю не случайно. Обычно это означает повышенное качество резистора вообще. (Во втором каскаде не так критично - можно и пленку, и углерод.) Подозреваю, что фольговые танталовые или медные будут еще лучше, но пока я не смог найти их на столь малые номиналы. Наилучшими здесь пока оказались отечественные С2-10.

С2-10 являются высокочастотными точными, что хорошо видно при внешнем осмотре. Основные признаки:

  • Блестящие не закрашенные колпачки.
  • На проводящем слое отсутствуют спиральные канавки - безындуктивность.
  • Присутствуют следы подгонки - продольные пропилы, сделанные алмазным диском.
  • Некоторые резисторы имеют темный синеватый металлический оттенок покрытия проводящего слоя.

Что касается выбора конденсатора С4, то моя остановка на ФТ определяется просто - это лучшее, из того, что я пробовал. По ФТ могу сказать то же, что и по танталовым резисторам: нейтральность и детальность без яда и резкости. Не буду утверждать, что они лучшие вообще. Например, очень хочу попробовать знаменитые медные конденсаторы Jensen (бумага - масло), о которых весьма положительно отзывались С. Рубцов и О. Хавин. Как у нас говорят: «Будут деньги - будет и медь с маслом!».

Прослушивались же такие конденсаторы: МБМ, К40-У9, К73, К71 - всё очень плохо! MultiCap RTX и PPFX, алюминиевый Jensen (бумага - масло) 1973 года , ССГ, К31 - сносно, но не более.

Неудача с Jensen, вероятно, вызвана тем, что они были старые и чисто электротехнические, несмотря на то, что выдраны из какого-то Audio Note.

Если вы задумали строить усилитель, то затраты на выходные трансформаторы настоятельно рекомендую планировать следующим образом:

  1. Располагая энной суммой под построение усилителя и имея намерение потратить её более-менее сразу, на трансформаторы отложите половину и никак не меньше.
  2. Если вы планируете потратить энную сумму в течение длительного времени (постепенная доводка), то повысьте стоимость трансов до двух третей этой суммы. Постепенно тратить легче.

Выходные трансформаторы (да и любые трансформаторы вообще!) не бывают слишком хорошими, просто бывает мало денег. Если даже в хорошей и «правильной» схеме поставить дешевое железо - чуда не случится, она не заиграет так, как могла бы. Трансформатор - сердце усилителя.

К сожалению, серьезная технология изготовления качественных трансформаторов, особенно для однотактных усилителей, за 80 последних лет не придумала дешевых решений. Так что не советую вам тешить себя надеждой намотать качественный выходной трансформатор самому на кухне. К тому времени, когда они станут у вас получаться более-менее сносными, уже наступят возрастные болезни, в том числе и ухудшение слуха.

Изготовление по-настоящему хороших трансформаторов под силу слаженным коллективам, например, нашим родным «ЭРАудио» из Новосибирска либо иноземным дядькам из Tamura-Magnequest-Sowter’ов и др. При этом ещё раз хочу напомнить историю о том, что трансформаторы Tango перестали выпускаться по причине преклонного возраста делавших их японских дедушек, которые так и не смогли передать накопленный опыт молодому поколению.

В настоящее время трансформаторы Tango продолжают выпускаться в Японии, но уже другим «коллективом авторов». Их номенклатура поредела более чем на две трети, а дорогие и качественные однотактные модели из неё исчезли совсем. Трансформаторы Tango прежних лет в настоящее время постепенно переходят в разряд антиквариата, в том числе и по цене. - Прим. ред.

Final

Если редакция сочтет возможным , то продолжение последует! В этом случае я планирую рассказать предысторию и дать несколько пройденных вариантов схем, схему фиксированного смещения выходного каскада. Подумаю также над оптимальной комплектацией усилителя, исходя из разных бюджетов.

Уже сочла. - Прим. ред.

Таблица 1

Детали усилителя
R1 100 k 1/4 w С2-10
R2 33 k 2 w Audio Note tantal, Riken Ohm, Kiwame, Allen Bradley
R3 2,7 Ohm 2 w С2-10
R4 100 k ALPS RK40112 «Black Beauty»
R5 1 m 1/4 w С-2-10, Holco, Audio Note tantal, Riken Ohm
R6, R7 5 Ohm 5 w С2-10
R8, R9 15 Ohm 2 w
R10 10 Ohm 1 w Audio Note tantal, Riken Ohm, Allen Bradley
Конденсаторы
С1,С2 100 + 100 мкФ х 500 В Black Gate WKZ
С3, С4 0,22 мкФ х 600 В ФТ-2 фторопласт
С5 0,47 мкФ х 200В MultiCap RTX
С6,С7 100 + 100 мкФ х 500 В Black Gate WKZ
Лампы
VL1 6C17К-В металлокерамический триод
VL2 2C4C прямонакальный триод
Моточные узлы
Др1 - 10 витков провода Jensen 0,8 мм (серебро, моножила), диаметр намотки 5 мм
Т1 - Tango X5-S

Усилитель НЧ — неотъемлемая часть любого совре­менного радиоприемника, телевизора, магнитофона и многих других радиотехнических устройств. Без усилите­лей НЧ невозможны были бы громкий прием программ радиовещательных станций, звуковое сопровождение те­левизионных передач, запись и воспроизведение звука.

Однокаскадный усилитель НЧ был и в твоем одно-транзисторном приемнике, но его усиления недостаточно для громкоговорящего радиоприема. Поэтому надо увеличить число каскадов усилителя.

Попробуй смонтировать простой двухкаскадный уси­литель и провести с ним ряд экспериментов. Такой уси­литель можно, например, соединить с детекторным при­емником — получится приемник 0-V-2. А с рефлексным приемником 1-V-1 он образует приемник 1-V-3, обеспе­чивающий уверенный прием не только местных, но и мощных отдаленных радиостанций.

Для усилителя потребуются маломощные низкочастот­ные транзисторы МП39…МП42 со статическим коэффици­ентом передачи тока не менее 30.

Принципиальная схема первого варианта такого уси­лителя НЧ изображена на рис. 52. Первый его каскад образуют транзистор V 1, резисторы R 1, R 2, конденса­тор С1. Он должен напомнить тебе однокаскадный уси­литель НЧ, знакомый по шестому практикуму (см. рис. 29). Только нагрузкой транзистора (вместо телефо­нов) стал резистор R 2. Второй же каскад усилителя на транзисторе V 2 аналогичен первому, но его нагрузкой служат телефоны В1. Электролитический конденсатор С2 (такой же, как С1) является элементом межкаскад­ной связи.

Принципиально второй каскад усилителя работает так же, как и первый. Разница только в том, что первый кас­кад усиливает входной низкочастотный сигнал, а второй — сигнал, уже усиленный первым каскадом. В результате повышается чувствительность усилителя, и звук будет громче.

Однокаскадный усилитель ты смонтировал еще на пятом практикуме. Теперь добавь к нему второй каскад. Получится двухкаскадный усилитель НЧ. В коллекторную; цепь транзистора VI первого каскада, ставшего теперь 1 каскадом предварительного усиления низкочастотного сигнала, включи нагрузочный резистор R 2 сопротивлени­ем 4,7…5,6 кОм, а телефоны — в коллекторную цепь транзистора второго каскада. Чтобы установить такой же ток покоя транзистора первого каскада (1…1.2 мА), со­противление базового резистора R 1 надо уменьшить. Ток покоя коллектора второго транзистора в пределах 4,..6 мА, соответствующий режиму работы выходного каскада, установи подбором резистора R 3.

Не ошибись в полярности включения электролитиче­ского конденсатора С2: отрицательной обкладкой он должен быть соединен с коллектором первого транзи­стора, а положительной — с базой второго транзистора.

Подключи ко входу усилителя абонентский громкого­воритель и, как во время опытов с однокаскадным уси­лителем, используй его в качестве электродинамического микрофона. Теперь, когда усилитель стал двухкаскадным, телефоны звучат значительно громче.

Схема другого варианта двухкаскадного усилителя НЧ показана на рис. 53. Здесь транзистор VI включен по схеме с общим коллектором (эмиттерный повтори­тель), а его нагрузкой служит эмиттерный р- n переход транзистора V 2, включенного по схеме с общим эмитте­ром. Оба транзистора, токи которых взаимосвязаны, об­разуют как бы единый усилительный каскад. Режим ра­боты выходного транзистора V 2 определяется током эмиттера входного транзистора, который подбирается резистором R 1.

Преимущества усилителя этого варианта — простота и меньшее число деталей, Такой усилитель, кроме того, имеет значительно большее, чем усилитель пер­вого варианта, входное сопротивление, что позволяет подключать к нему пьезоэлектрический звукосниматель и таким образом воспроизводить грамзапись. В це­лом же он работает так же, как и усилитель перво­го варианта.

Может случиться, что в этом варианте усилителя коллекторный ток транзистора V 2 окажется большим (более 8…10 мА) и не будет уменьшаться с увеличением сопротивления резистора R 1. Так бывает, если обрат­ный ток коллектора Iко первого транзистора больше та­кого же параметра второго транзистора, в таком случае надо попробовать поменять транзисторы местами или зашунтировать эмиттерный переход второго транзистора резистором сопротивлением 100…200 Ом (на рис. 53 он показан штриховыми линиями).

Теперь, продолжая опыты, соедини его с однотран-зисторным рефлексным приемником (собранным ранее по схеме на рис. 50), чтобы превратить их в единый при­емник 1-У-З. Делай это так. в коллекторную цепь тран­зистора V 1 приемника 1-V-1 вместо телефонов и блоки­рующего конденсатора включи нагрузочный резистор» сопротивлением 2,7…3,3 кОм (на рис. 54 — R 4) и к точке соединения нагрузок этого транзистора {высокочастного дросселя L 3 и резистора R 4) Подключи усилитель НЧ. Теперь входной электролитический конденсатор С1 двух-каскадного усилителя будет конденсатором €4, транзи­стор VI первого каскада — транзистором V 4, а транзи­стор V 2 второго каскада — транзистором V 5 объединен­ного приемника 1-К-3. Изменится, разумеется, нумера­ций и некоторых других деталей. Начерти самостоятель­но схему такого приемника, соединив, конечно, минусо­вые и плюсовые проводники рефлексного приемника и двухкаскадного усилителя НЧ, так как их источник пита­ния общий.

Какая теперь должна быть полярность входного электролитического конденсатора С4 подключаемого усилителя? Такая же, как полярность аналогичного ему межкаскадного конденсатора усилителя первого варианта (см. С2 на рис, 52). Значит, соединяя усилитель с приемником, не забудь изме­нить полярность включения этого конденсатора.

Чтобы установить коллек­торный ток транзистора VI в пределах t…t,2 мА, вклю­чи в его базовую цепь рези­стор (R 1 на рис. 50 и 54) большего сопротивления — 220…470 кОм,

Подключи к приемнику наружную антенну и заземле­ние, включи питание и настрои его на волну местной ра­диовещательной станции» Телефоны должны звучать очень громко. Отключи заземление и подстрой входной контур на ту же станцию. Телефоны стали звучать сла-бее, но все же громко, Замени наружную антенну от­резком проводе длиной К..1,5 м и снова подстрой вход­ной контур. Приемник продолжает работать.

А теперь отключи и эпу aftfetmy щ поворачивая прием­ник в горизонтальной плоскости и одновременно под­страивая входной контур конденсатором переменном емкости, добейся приема сигналов той же станции. У те­бя получился приемник с магнитной антенной, образован­ной ферритовым стержнем с находящейся на нем ка­тушкой входного контура.

Можно ли на выход такого приемника включить ди­намическую головку прямого излучения? Можно, но только через понижающий трансформатор низкой часто­ты, с помощью которого можно согласовать относитель­но большое сопротивление выходной.цепи усилителя с малым сопротивлением звуковой катушки динамической головки. Роль такого трансформатора, называемого со­гласующим, а чаще — выходным, без каких-либо переде­лок может выполнять трансформатор абонентского гром­коговорителя. Включи его в коллекторную цепь выход­ного транзистора вместо телефонов (на рис» 55 — т|»Нг сформатор Т Л). Громкоговоритель будет звучать гром­че, если к приемнику подключить наружную антенну и сделать заземление.

Выходные каскады транзисторных усилителен НЧ чв-cto делают двухтактными, что значительно., повышает их выходную мощность. Усилителю с таким каскадом будет посвящен специальный практикум. А на следующем практикуме речь пойдет об усилителе колебаний высокой частоты.

Литература:
Борисов В. Г. Практикум начинающего радиолюбителя.2-е изд., перераб. и доп. - М.: ДОСААФ, 1984. 144 с., ил. 55к.

Минобрнауки России

Федеральное государственное бюджетное общеобразовательное

учреждение высшего профессионального образования

«Тульский государственный Университет»

Институт высокоточных систем им. В. П. Грязева

КАФЕДРА РАДИОЭЛЕКТРОНИКИ

Расчет двухкаскадного резистивного усилителя на биполярных транзисторах

пояснительная записка

к курсовой работе по электронике

Студент гр. 130601 ___________________ П.Л. Леонов

(подпись и дата)

Руководитель - доцент каф. РЭ_________________ В. В. Давыдов

Тула – 2012

Изм.

Лист

№ докум.

Подпись

Дата

Лист

Проверить что тут писать

Разраб.

Леонов П.Л.

Провер.

Давыдов В.В.

Т.котр.

Давыдов В.В.

Н. Контр

Утв.

Прохождение периодического сигнала через LC-фильтр с потерями.

Листов

ТулГУ гр.130601

Аннотация

Данная пояснительная записка написана к курсовой работе по дисциплине «Электроника» для варианта «03» и содержит в себе результаты расчета резистивного усилителя на биполярных транзисторах. В качестве анализируемого усилителя выступает двухкаскадный усилитель на кремниевых биполярных транзисторах, основные параметры которого рассчитываются в одной из частей данной записки.

В качестве дополнительного материала к текстовой информации данной пояснительной записки здесь приведены NN иллюстраций. Помимо этого составлена графическая часть на листе формата А1, включающая наиболее важные схемы и характеристики.

Объем пояснительной записки – NN листов.

  1. Титульный лист………………………………………………………..1
  2. Аннотация……………………………………………………………...2
  3. Бланк задания к курсовой работе………………………………….....3
  4. Содержание…………………………………………………………….5
  5. Введение………………………………………………………………..6
  6. Анализ технического задания на курсовую работу……………...….7
  7. Обзор литературных источников……………………………………..9
  8. Анализ заданной ЭДС………………………………………………..10
  9. Определение ширины спектра ЭДС…………………………………11
  10. Анализ схемы. Расчет параметров схемы………………………...14
  11. Расчет А-параметров схемы фильтра……………………………..15
  12. Входное сопротивление нагруженного четырехполюсника…….17
  13. Нахождение спектра выходного напряжения…………………….18
  14. Расчет коэффициентов передачи фильтра.……………………….20
  15. Расчет формы сигнала на выходе………………………………….23
  16. Изменение сопротивления нагрузки при неизменных параметрах схемы…………………………………………………………….………………..25
  17. Заключение………………………………………….………………28
  18. Список использованной литературы………….…………………..29

Введение

«Электроника» является важнейшей дисциплиной в программе подготовки специалиста направления «Радиотехника». Данный курс лекций помогает студентам приобретать навыки разработки методов анализа и синтеза радиотехнических устройств различного назначения на уровне схемотехнических решений. В соответствии с этим курс «Электроника» также является теоретической базой для изучения специальных дисциплин с одной стороны, и основой расчета и исследования разнообразных устройств и систем передачи/обработки информации с другой стороны.

Резистивные усилители являются неотъемлемой частью подавляющего большинства современных технических устройств, т.к.

дают возможность исследования и обработки слабых сигналов.

Помимо приобретения навыков анализа подобных систем в ходе выполнения курсовой работы студенты должны:

Закрепить знания о физических процессах в электрических цепях;

Закрепить и расширить знания о математических моделях, описывающих характеристики и свойства электрических цепей;

Закрепить навыки работы с прикладными программами как, например, с интегрированной средой для решения математических задач MathCAD и текстовым процессором (редактором) Word ;

В результате выполнения курсовой работы каждый студент должен будет понять физические явления в резистивных усилительных каскадах, основным назначением которых является усиление слабых сигналов в заданной полосе частот.

Анализ технического задания на курсовую работу

Вариант курсовой работы с номером «03» предполагает следующие входные данные для анализа и расчета:

Рис. 1 – Двухкаскадный резистивный усилитель.

Таблица №1 (параметры схемы):

R н,Ом

F н,Гц

Результатом выполнения курсовой работы должен быть расчет номинальных величин резисторов и конденсаторов схемы, коэффициентов нестабильности рабочих точек каскадов, а так же АЧХ каскадов и усилителя в целом. Я бы хотел выделить несколько этапов на пути получения результата:

1) Расчет номинальных величин сопротивлений и емкостей;

2) Уравнение комплексного коэффициента передачи усилителя;

3) Нормированная АЧХ усилителя;

4) Минимальные значения входных и выходных сопротивлений каскадов по переменному току;

Обзор литературных источников

В методическом указании к курсовой работе был приведен список рекомендуемой литературы. Расчет курсовой работы я вел с использованием лекционного материала, теоретических знаний, полученных на занятиях и лабораторных, а также некоторых изданий из списка рекомендуемых. О трех используемых мною книгах стоит поговорить более подробно.

Наиболее важным считаю данное издание:

В данной книге изложены все тонкости курса Основ теории цепей, особенно подробно рассмотрены основные законы и методы расчета электрических цепей при постоянных токах и напряжениях. Авторы уделяют внимание и вопросу о синусоидальных токах – данная тема важна для меня.

Вторым используемым изданием был справочник по математике, наиболее полный и наиболее подробных из всех представленных в библиотеке:

Третье издание я решил выбрать самостоятельно, им оказался самоучитель по работе в математической среде MathCAD . Справочник Кудрявцева, предложенный к использованию руководителем курсовой работы, был не таким понятным для меня, а также был недоступен для использования. В найденном мной самоучителе не был указан автор, т. к. издание имелось лишь в электронном виде. Тем не менее, данное пособие очень пригодилось при написании расчетного файла к курсовой работе.

Выбор биполярного транзистора.

Т.к. к усилителю не предъявлено жестких требования по граничной частоте,усилению и стабильности каскадов,выберем общедоступный транзистор кт361б

Рис. 2 – зависимость U нас от температуры кт361а.

Исходя из данных принимаем U нас=0,5В для 20 градусов по Цельсию.

Рис. 3 – входная ВАХ кт361б.

Входная ВАХ относительно линейна при U бэ=0,7В.

Таблица №2 (параметры транзисторов):

h 21э

F гр,Мгц

U кэmax, В

U бэmax, В

I кmax ,А

Расчет номинальных величин сопротивлений.

Рис. 4 – Двухкаскадный резистивный усилитель.

Для согласования выходного сопротивления усилителя с нагрузкой расчет следует вести с оконечного каскада:

R 5 примем равным R н для согласования каскада с нагрузкой.

Т.к. R н=510 Ом, то выберем R 5=510 Ом. β примем равным 200.

Напряжение на R 6 примем равным 0,1*Е=1 В;

На R 5 падает напряжение U 5=(E -U нас-U 6)/2=4.25 В;

Ток коллектора I к2=U 5/R 5=8.33 мА;

Отсюда найдем ток базы I б2= I к2/β=41.7 мкА;

R 6=0.1*E / I к2=120 Ом

Найдем ток делителя:

I дел2=(5÷10)* I б2=8* I б2=0,33 мА;

На резисторе R 4 падает напряжение U 4,следовательно

R 4=U 4/I дел2=(0.1E +U бэ)/I дел2=5.1 кОм;

R 3=(E -U 4)/(I дел2+ I б2)= 22 кОм;

Сопротивление R бэ=U бэ/I б2=16,8 кОм.

Найдем входное и выходное сопротивления 2-го каскада по переменному току:

Рис.5-эквивалентная схема замещения второго каскада.

Из рис.5 видно:

Y вх2=1/ R 4+1/ R 3+1/(R 6+ R бэ)

R вх2=1/ Y вх2=3.3 кОм.

R кэ2= U Эрли/ I к2

U Эрли примем равным 95В

R кэ2=11,5 кОм.

R вых2= (R кэ2* R 5)/(R кэ2+ R 5)=588 Ом.

Расчитаем номинальные величины сопротивлений первого каскада:

R 2≈ R вх2=3.3 кОм.

I к1=(E - U нас)/(2* R 2)=1.44 мА.

I б1= I к1/ β =7.2 мкА.

R 1=(E - U бэ)/ I б1=1,2 Мом.

Рис.6-эквивалентная схема замещения первого каскада.

R бэ1=97,2 кОм.

R кэ1=66 кОм.

R вх1=(R бэ1* R 1)/(R бэ1+ R 1)=89,9 кОм.

R вых1=(R кэ1* R 2)/(R кэ1+ R 2)=3,14 кОм.

Найдем номинальные величины емкостей:

Т.к. на R вх должно быть падение напряжения не менее 1/√2 U сигн,то

Zc на f н не должно превышать (√2-1) R вх,следовательно

С=0,312/(f н* R вх).

С1≈0,312/(f н* R вх1)=33 нФ.

С2≈0,312/(f н* R вх2)=0,75 мкФ.

С3≈0,312/(f н* R н)=5,1 мкФ.

Рис.7-Принципиальная электрическая схема усилителя.

Уравнение комплексного коэффициента передачи усилителя.

Коэффициент передачи входного напряжения равен

Кu вх(jω )=R вх*(R вх+Zc вх(jω )).

I вх(jω )=U вх* Кu вх(jω )/R бэ.

I вых(jω )=β* I вх(jω ).

U вых(jω )= I вых(jω )*R н/(R вых+R н).

При обработке данных формул с помощью ЭВМ получаем:

Имея уравнение комплексного коэффициента передачи усилителя можно найти АЧХ усилителя в заданной полосе частот.

Расчет АЧХ усилителя.

Для расчета АЧХ усилителя нам понадобится модуль коэффициента передачи. Произведя расчет получаем:

Таблица №3 (коэффициенты передачи усилителя):

F ,Гц

1000

2000

5000

10000

Коэффициент передачи усилителя зависит от частоты нелинейно,

т.к. в схеме присутствуют реактивные элементы (конденсаторы).

Построим график нормированной АЧХ от 0 Гц до 10 кГц:

Рис.8-нормированная АЧХ усилителя от 0 Гц до 10 кГц.

Коэффициент усиления выражен в дБ. Этот график не удобен, т.к. на нем плохо видно увеличение АЧХ на низких частотах. Поэтому разобьем диапазон частот на несколько отрезков.

Заключение

В данной курсовой работе были рассмотрены характеристики П-образного реактивного фильтра нижних частот и приведены все необходимые формулы вычисления его параметров с таблицами значений и рисунками. Результаты расчёта были получены с помощью интегральной среды Math CAD . Система Math CAD называется самой современной, универсальной и массовой математической системой. Она позволяет выполнить как численные, так и аналитические (символьные) вычисления, имеет удобный математическо-ориентированный интерфейс.

По итогам курсовой работы можно сделать некоторые выводы. Если говорить конкретнее, то:

  1. Был произведен анализ задания на курсовую работу;
  2. Исходная функция входного сигнала была разложена в ряд Фурье и полностью проанализирована;
  3. Были рассчитаны параметры элементов схемы фильтра, рассчитаны его важные параметры, а также составлены амплитудно- и фазочастотные характеристики.

Также в ходе выполнения курсовой работы я нашел входное сопротивление системы и формы выходного напряжения для заданной формы сигнала. В некоторых местах пояснительной записки были приведены необходимые цветные иллюстрации, поясняющие работу и упрощающие понимании написанного.

Список использованной литературы

  1. Основы теории цепей: Учебник для вузов ⁄ Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. – 5-е изд., перераб. – М.: Энергоатомиздат, 1989. – 528 с.: ил.
  2. Бронштейн И.Н. и Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. Изд-е 13-е, перераб. – М.: ГИТТЛ, 1986. – 504 с.
  3. ГОСТ 2.004-88 ЕСКД. Общие требования к выполнению конструкторских и технологических документов на печатающих и графических устройствах вывода ЭВМ
  4. Самоучитель по MathCAD – книга в электронном виде.

Однокаскадный усилитель ЗЧ (рис. 1).

Это простейшая конструкция, которая позволяет продемонстрировать усилительные способности транзистора. Правда, коэффициент усиления по напряжению невелик - он не превышает 6, поэтому сфера применения такого устройства ограничена. Тем не менее его можно подключить, скажем, к детекторному радиоприемнику (он должен быть нагружен на резистор 10 кОм) и с помощью головного телефона BF1 прослушивать передачи местной радиостанции.

Усиливаемый сигнал поступает на входные гнезда Х1, Х2, а напряжение питания (как и во всех остальных конструкциях этого автора, оно составляет 6 В - четыре гальванических элемента напряжением по 1,5 В, соединенных последовательно) подается на гнезда Х3, Х4. Делитель R1 R2 задает напряжение смещения на базе транзистора, а резистор R3 обеспечивает обратную связь по току, что способствует температурной стабилизации работы усилителя.

Как происходит стабилизация? Предположим, что под воздействием температуры увеличился ток коллектора транзистора. Соответственно увеличится падение напряжения на резисторе R3. В итоге уменьшится ток эмиттера, а значит, и ток коллектора - он достигнет первоначального значения.

Нагрузка усилительного каскада - головной телефон сопротивлением 60...100 Ом.

Проверить работу усилителя несложно, нужно коснуться входного гнезда Х1, например, пинцетом - в телефоне должно прослушиваться слабое жужжание, как результат наводки переменного тока. Ток коллектора транзистора составляет около 3 мА.

Двухкаскадный усилитель ЗЧ на транзисторах разной структуры (рис. 2).

Он выполнен с непосредственной связью между каскадами и глубокой отрицательной обратной связью по постоянному току, что делает его режим независящим от температуры окружающей среды. Основа температурной стабилизации - резистор R4, "работающий" аналогично резистору R3 в предыдущей конструкции.

Усилитель более "чувствительный" по сравнению с однокаскадным - коэффициент усиления по напряжению достигает 20. На входные гнезда можно подавать переменное напряжение амплитудой не более 30 мВ, иначе возникнут искажения, прослушиваемые в головном телефоне.

Проверяют усилитель, прикоснувшись пинцетом (или просто пальцем) входного гнезда Х1 - в телефоне раздастся громкий звук. Усилитель потребляет ток около 8 мА.

Эту конструкцию можно использовать для усиления слабых сигналов, например, от микрофона. И конечно, он позволит значительно усилить сигнал ЗЧ, снимаемый с нагрузки детекторного приемника.

Двухкаскадный усилитель ЗЧ на транзисторах одинаковой структуры (рис. 3).

Здесь также использована непосредственная связь между каскадами, но стабилизация режима работы несколько отличается от предыдущих конструкций. Допустим, что ток коллектора транзистора VT1 уменьшился. Падение напряжения на этом транзисторе увеличится, что приведет к увеличению напряжения на резисторе R3, включенном в цепи эмиттера транзистора VT2. Благодаря связи транзисторов через резистор R2, увеличится ток базы входного транзистора, что приведет к увеличению его тока коллектора. В итоге первоначальное изменение тока коллектора этого транзистора будет скомпенсировано.

Чувствительность усилителя весьма высока - коэффициент усиления достигает 100. Усиление в сильной степени зависит от емкости конденсатора С2 - если его отключить, усиление снизится. Входное напряжение должно быть не более 2 мВ.

Усилитель хорошо работает с детекторным приемником, с электретным микрофоном и другими источниками слабого сигнала. Ток, потребляемый усилителем, - около 2 мА.

Двухтактный усилитель мощности ЗЧ (рис. 4).

Он выполнен на транзисторах разной структуры и обладает усилением по напряжению около 10. Наибольшее входное напряжение может быть 0,1 В.

Усилитель двухкаскадный: первый собран на транзисторе VT1, второй - на VT2 и VT3 разной структуры. Первый каскад усиливает сигнал ЗЧ по напряжению, причем обе полуволны одинаково. Второй - усиливает сигнал по току, но каскад на транзисторе VT2 "работает" при положительных полуволнах, а на транзисторе VT3 - при отрицательных.

Режим по постоянному току выбран таким, что напряжение в точке соединения эмиттеров транзисторов второго каскада равно примерно половине напряжения источника питания. Это достигается включением резистора R2 обратной связи. Ток коллектора входного транзистора, протекая через диод VD1, приводит к падению на нем напряжения, которое является напряжением смещения на базах выходных транзисторов (относительно их эмиттеров), - оно позволяет уменьшить искажения усиливаемого сигнала.

Нагрузка (несколько параллельно включенных головных телефонов либо динамическая головка) подключена к усилителю через оксидный конденсатор С2. Если усилитель будет работать на динамическую головку (сопротивлением 8...10 Ом), емкость этого конденсатора должна быть минимум вдвое больше.

Обратите внимание на подключение нагрузки первого каскада - резистора R4. Его верхний по схеме вывод соединен не с плюсом питания, как это обычно делается, а с нижним выводом нагрузки.

Это так называемая цепь вольтодобавки, при которой в базовую цепь выходных транзисторов поступает небольшое напряжение ЗЧ положительной обратной связи, выравнивающее условия работы транзисторов.

Двухуровневый индикатор напряжения (рис. 5).

Такое устройство можно использовать, например, для индикации "истощения" батареи питания либо индикации уровня воспроизводимого сигнала в бытовом магнитофоне. Макет индикатора позволит продемонстрировать принцип его работы.

В нижнем по схеме положении движка переменного резистора R1 оба транзистора закрыты, светодиоды HL1, HL2 погашены. При перемещении движка резистора вверх, напряжение на нем увеличивается. Когда оно достигнет напряжения открывания транзистора VT1, вспыхнет светодиод HL1.

Если продолжать перемещать движок, наступит момент, когда вслед за диодом VD1 откроется транзистор VT2. Вспыхнет и светодиод HL2. Иными словами, малое напряжение на входе индикатора вызывает свечение только светодиода HL1, а большее - обоих светодиодов.

Плавно уменьшая входное напряжение переменным резистором, заметим, что вначале гаснет светодиод HL2, а затем - HL1. Яркость светодиодов зависит от ограничительных резисторов R3 и R6: при увеличении их сопротивлений яркость падает.

Чтобы подключить индикатор к реальному устройству, нужно отсоединить верхний по схеме вывод переменного резистора от плюсового провода источника питания и подать контролируемое напряжение на крайние выводы этого резистора. Перемещением его движка подбирают порог "срабатывания" индикатора.

При контроле только напряжения источника питания допустимо установить на месте HL2 светодиод зеленого свечения (АЛ307Г).

Трехуровневый индикатор напряжения (рис. 6).

Он выдает световые сигналы по принципу меньше нормы - норма - больше нормы. Для этого в индикаторе использованы два светодиода красного свечения и один - зеленого.

При некотором напряжении на движке переменного резистора R1 ("напряжение в норме") оба транзистора закрыты и "работает" только зеленый светодиод HL3. Перемещение движка резистора вверх по схеме приводит к увеличению напряжения ("больше нормы") на нем. Открывается транзистор VT1. Светодиод HL3 гаснет, а HL1 зажигается. Если движок перемещать вниз и уменьшать таким образом напряжение на нем ("меньше нормы"), транзистор VT1 закроется, а VT2 откроется. Будет наблюдаться такая картина: вначале погаснет светодиод HL1, затем зажжется и вскоре погаснет HL3 и в заключение вспыхнет HL2.

Из-за низкой чувствительности индикатора получается плавный переход от погасания одного светодиода к зажиганию другого: еще не погас полностью, например, HL1, а уже зажигается HL3.

Триггер Шмитта (рис. 7).

Как известно, это устройство используется обычно для преобразования медленно изменяющегося напряжения в сигнал прямоугольной формы.

Когда движок переменного резистора R1 находится в нижнем по схеме положении, транзистор VT1 закрыт. Напряжение на его коллекторе высокое. В результате транзистор VT2 оказывается открытым, а значит, светодиод HL1 зажжен. На резисторе R3 образуется падение напряжения.

Медленно перемещая движок переменного резистора вверх по схеме, удастся достичь момента, когда произойдет скачкообразное открывание транзистора VT1 и закрывание VT2. Это случится при превышении напряжения на базе VT1 падения напряжения на резисторе R3. Светодиод погаснет.

Если после этого перемещать движок вниз, триггер возвратится в первоначальное положение - вспыхнет светодиод. Это произойдет при напряжении на движке меньшем, чем напряжение выключения светодиода.

Ждущий мультивибратор (рис. 8).

Такое устройство обладает одним устойчивым состоянием и переходит в другое только при подаче входного сигнала. При этом мультивибратор формирует импульс "своей" длительности независимо от длительности входного. Убедимся в этом, проведя эксперимент с макетом предлагаемого устройства.

В исходном состоянии транзистор VT2 открыт, светодиод HL1 светится. Достаточно теперь кратковременно замкнуть гнезда Х1 и Х2, чтобы импульс тока через конденсатор С1 открыл транзистор VT1. Напряжение на его коллекторе снизится, и конденсатор С2 окажется подключенным к базе транзистора VT2 в такой полярности, что тот закроется. Светодиод погаснет.

Конденсатор начнет разряжаться, ток разрядки потечет через резистор R5, удерживая транзистор VT2 в закрытом состоянии. Как только конденсатор разрядится, транзистор VT2 вновь откроется и мультивибратор перейдет снова в режим "ожидания".

Длительность формируемого мультивибратором импульса (продолжительность нахождения в неустойчивом состоянии) не зависит от длительности запускающего, а определяется сопротивлением резистора R5 и емкостью конденсатора С2. Если подключить параллельно С2 конденсатор такой же емкости, светодиод вдвое дольше будет оставаться в погашенном состоянии.

Бывает, что вам нужно проследить за током, потребляемым нагрузкой, и в случае его превышения - вовремя отключить источник питания, чтобы не вышли из строя нагрузка или источник. Для выполнения подобной задачи служат сигнализаторы, извещающие о превышении нормы потребляемого тока. Особую роль выполняют такие устройства при коротком замыкании в цепи нагрузки.

Каков принцип работы сигнализатора? Понять его позволит предлагаемый макет устройства, выполненный на двух транзисторах. Если резистор R1 отключен от гнезд Х1, Х2, нагрузкой для источника питания (его подключают к гнездам Х3, Х4) будет цепь из резистора R2 и светодиода HL1 - он горит, информируя о наличии напряжения на гнездах Х1 и Х2. При этом ток протекает через датчик сигнализатора - резистор R6. Но падение напряжения на нем невелико, поэтому транзистор VT1 закрыт. Соответственно закрыт и транзистор VT2, светодиод HL2 погашен. Стоит подключить к гнездам Х1, Х2 дополнительную нагрузку в виде резистора R1 и увеличить таким образом общий ток, как падение напряжения на резисторе R6 увеличится. При соответствующем положении движка переменного резистора R7, которым устанавливают порог срабатывания сигнализатора, транзисторы VT1 и VT2 откроются. Вспыхнет светодиод HL2 и просигнализирует о критической ситуации. Светодиод HL1 продолжает светиться, сообщая о наличии напряжения на нагрузке.

А что будет при коротком замыкании в цепи нагрузки? Для этого достаточно замкнуть (на короткое время) гнезда Х1 и Х2. Снова вспыхнет светодиод HL2, а HL1 погаснет.

Движок переменного резистора можно установить в такое положение, при котором сигнализатор не будет реагировать на подключение резистора R1 сопротивлением 1 кОм, но "сработает", когда на месте дополнительной нагрузки окажется резистор, скажем, сопротивлением 300 Ом (он входит в состав набора).

Приставка "Цветной звук"

Одна из популярных радиолюбительских конструкций - светодинамическая установка (СДУ). Ее еще называют "цветомузыкальной приставкой". При подключении такой приставки к источнику звука, на ее экране появляются самые причудливые цветовые всполохи.

Очередная конструкция набора - простейшее устройство, позволяющее познакомиться с принципом получения "цветного звука".

На входе приставки стоят два частотных фильтра - С1 R4 и R3C2. Первый из них пропускает высшие частоты, а второй - низшие. Выделенные фильтрами сигналы поступают на усилительные каскады, нагрузками которых являются светодиоды. Причем в канале высших частот стоит светодиод HL1 зеленого цвета свечения, а в канале низших частот - красного (HL2).
Источником сигнала звуковой частоты может стать, например, радиоприемник или магнитофон. К динамической головке одного из них нужно подключить два провода в изоляции и соединить их с входными гнездами Х1 и Х2 приставки. Прослушивая воспроизводимую мелодию, вы будете наблюдать вспышки светодиодов. Кроме того, нетрудно различать "реакцию" светодиодов на звуки той или иной тональности. Скажем, при звуках барабана будет вспыхивать светодиод красного цвета свечения, а звуки скрипки вызовут вспышки светодиода зеленого цвета. Яркость светодиодов устанавливают регулятором громкости источника звукового сигнала.

Индикатор температуры

Всем известен обычный ртутный термометр, столбик которого поднимается при повышении температуры тела. В данном случае датчиком является ртуть, расширяющаяся с нагревом.

Существует немало электронных компонентов, также чувствительных к температуре. Они порой становятся датчиками в приборах, предназначенных для измерения температуры, скажем, окружающей среды, или индикации превышения ее заданной нормы.

В качестве такого термочувствительного элемента в предлагаемом макете использован кремниевый диод VD1. Он включен в эмиттерную цепь транзистора VT1. Начальный ток через диод задают (переменным резистором R1) такой, чтобы светодиод HL1 едва светился.

Если теперь прикоснуться к диоду пальцем или каким-либо нагретым предметом, его сопротивление уменьшится, а значит, уменьшится и падение напряжения на нем. В итоге увеличится коллекторный ток транзистора VT1 и падение напряжения на резисторе R3. Транзистор VT2 начнет закрываться, a VT3, наоборот, открываться. Яркость светодиода будет возрастать. После охлаждения диода яркость светодиода достигнет первоначального значения.

Аналогичные результаты удастся получить, если нагревать транзистор VT1. А вот нагрев транзистора VT2, а тем более VT3 на яркости светодиода практически не скажется - слишком мало изменение тока через них.

Эти эксперименты показывают, что параметры полупроводниковых приборов (диодов и транзисторов) зависят от температуры окружающей среды.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Однокаскадный усилитель ЗЧ (рис. 1)
VT1 Биполярный транзистор

КТ315Б

1 В блокнот
C1-C3 47 мкФ 16В 3 В блокнот
R1 Резистор

10 кОм

1 В блокнот
R2 Резистор

3 кОм

1 В блокнот
R3 Резистор

300 Ом

1 В блокнот
BF1 Телефонный капсюль 1 В блокнот
Двухкаскадный усилитель ЗЧ на транзисторах разной структуры (рис. 2)
VT1 Биполярный транзистор

КТ315Б

1 В блокнот
VT2 Биполярный транзистор

КТ361Б

1 В блокнот
C1-C3 Электролитический конденсатор 47 мкФ 16В 3 В блокнот
R1, R2 Резистор

10 кОм

2 В блокнот
R3 Резистор

3 кОм

1 В блокнот
R4 Резистор

300 Ом

1 В блокнот
BF1 Телефонный капсюль 1 В блокнот
Двухкаскадный усилитель ЗЧ на транзисторах одинаковой структуры (рис. 3)
VT1, VT2 Биполярный транзистор

КТ315Б

2 В блокнот
C1-C3 Электролитический конденсатор 47 мкФ 16В 3 В блокнот
R1, R2 Резистор

10 кОм

2 В блокнот
R3 Резистор

300 Ом

1 В блокнот
BF1 Телефонный капсюль 1 В блокнот
Двухтактный усилитель мощности ЗЧ (рис. 4)
VT1, VT2 Биполярный транзистор

КТ315Б

2 В блокнот
VT3 Биполярный транзистор

КТ361Б

1 В блокнот
VD1 Диод

КД521А

1 В блокнот
C1-C3 Электролитический конденсатор 47 мкФ 16В 3 В блокнот
R1, R4 Резистор

1 кОм

2 В блокнот
R2 Резистор

10 кОм

1 В блокнот
R3 Резистор

3 кОм

1 В блокнот
BF1 Телефонный капсюль 1 В блокнот
Двухуровневый индикатор напряжения (рис. 5)
VT1, VT2 Биполярный транзистор

КТ315Б

2 В блокнот
VD1 Диод

КД521А

1 В блокнот
R1 Переменный резистор 10 кОм 1 В блокнот
R2, R4, R5 Резистор

10 кОм

3 В блокнот
R3, R6 Резистор

1 кОм

2 В блокнот
HL1, HL2 Светодиод

АЛ307Б

2 В блокнот
Трехуровневый индикатор напряжения (рис. 6)
VT1 Биполярный транзистор

КТ315Б

1 В блокнот
VT Биполярный транзистор

КТ361Б

1 В блокнот
R1 Переменный резистор 10 кОм 1 В блокнот
R2, R3 Резистор

1 кОм

2 В блокнот
HL1, HL2 Светодиод

АЛ307Б

2 В блокнот
HL3 Светодиод

АЛ307Г

1 В блокнот
Триггер Шмитта (рис. 7)
VT1, VT2 Биполярный транзистор

КТ315Б

2 В блокнот
R1 Переменный резистор 10 кОм 1 В блокнот
R2 Резистор

10 кОм

1 В блокнот
R3 Резистор

1 кОм

1 В блокнот
HL1 Светодиод

АЛ307Б

1 В блокнот
Ждущий мультивибратор (рис. 8)
VT1, VT2 Биполярный транзистор

КТ315Б

2 В блокнот
C1 Конденсатор 0.047 мкФ 1 В блокнот
C2, C3 Электролитический конденсатор 47 мкФ 16В 2 В блокнот
R1, R5 Резистор

100 кОм

2 В блокнот
R2, R4 Резистор

10 кОм

2 В блокнот
R3 Резистор

3 кОм

1 В блокнот
R6 Резистор

1 кОм

1 В блокнот
HL1 Светодиод

АЛ307Б

1 В блокнот
Сигнализатор перегрузки по току
VT1 Биполярный транзистор

КТ315Б

1 В блокнот
VT2 Биполярный транзистор

КТ361Б

1

Простейший усилитель на транзисторах может быть хорошим пособием для изучения свойств приборов. Схемы и конструкции достаточно простые, можно самостоятельно изготовить устройство и проверить его работу, произвести замеры всех параметров. Благодаря современным полевым транзисторам можно изготовить буквально из трех элементов миниатюрный микрофонный усилитель. И подключить его к персональному компьютеру для улучшения параметров звукозаписи. Да и собеседники при разговорах будут намного лучше и четче слышать вашу речь.

Частотные характеристики

Усилители низкой (звуковой) частоты имеются практически во всех бытовых приборах - музыкальных центрах, телевизорах, радиоприемниках, магнитолах и даже в персональных компьютерах. Но существуют еще усилители ВЧ на транзисторах, лампах и микросхемах. Отличие их в том, что УНЧ позволяет усилить сигнал только звуковой частоты, которая воспринимается человеческим ухом. Усилители звука на транзисторах позволяют воспроизводить сигналы с частотами в диапазоне от 20 Гц до 20000 Гц.

Следовательно, даже простейшее устройство способно усилить сигнал в этом диапазоне. Причем делает оно это максимально равномерно. Коэффициент усиления зависит прямо от частоты входного сигнала. График зависимости этих величин - практически прямая линия. Если же на вход усилителя подать сигнал с частотой вне диапазона, качество работы и эффективность устройства быстро уменьшатся. Каскады УНЧ собираются, как правило, на транзисторах, работающих в низко- и среднечастотном диапазонах.

Классы работы звуковых усилителей

Все усилительные устройства разделяются на несколько классов, в зависимости от того, какая степень протекания в течение периода работы тока через каскад:

  1. Класс «А» - ток протекает безостановочно в течение всего периода работы усилительного каскада.
  2. В классе работы «В» протекает ток в течение половины периода.
  3. Класс «АВ» говорит о том, что ток протекает через усилительный каскад в течение времени, равного 50-100 % от периода.
  4. В режиме «С» электрический ток протекает менее чем половину периода времени работы.
  5. Режим «D» УНЧ применяется в радиолюбительской практике совсем недавно - чуть больше 50 лет. В большинстве случаев эти устройства реализуются на основе цифровых элементов и имеют очень высокий КПД - свыше 90 %.

Наличие искажений в различных классах НЧ-усилителей

Рабочая область транзисторного усилителя класса «А» характеризуется достаточно небольшими нелинейными искажениями. Если входящий сигнал выбрасывает импульсы с более высоким напряжением, это приводит к тому, что транзисторы насыщаются. В выходном сигнале возле каждой гармоники начинают появляться более высокие (до 10 или 11). Из-за этого появляется металлический звук, характерный только для транзисторных усилителей.

При нестабильном питании выходной сигнал будет по амплитуде моделироваться возле частоты сети. Звук станет в левой части частотной характеристики более жестким. Но чем лучше стабилизация питания усилителя, тем сложнее становится конструкция всего устройства. УНЧ, работающие в классе «А», имеют относительно небольшой КПД - менее 20 %. Причина заключается в том, что транзистор постоянно открыт и ток через него протекает постоянно.

Для повышения (правда, незначительного) КПД можно воспользоваться двухтактными схемами. Один недостаток - полуволны у выходного сигнала становятся несимметричными. Если же перевести из класса «А» в «АВ», увеличатся нелинейные искажения в 3-4 раза. Но коэффициент полезного действия всей схемы устройства все же увеличится. УНЧ классов «АВ» и «В» характеризует нарастание искажений при уменьшении уровня сигнала на входе. Но даже если прибавить громкость, это не поможет полностью избавиться от недостатков.

Работа в промежуточных классах

У каждого класса имеется несколько разновидностей. Например, существует класс работы усилителей «А+». В нем транзисторы на входе (низковольтные) работают в режиме «А». Но высоковольтные, устанавливаемые в выходных каскадах, работают либо в «В», либо в «АВ». Такие усилители намного экономичнее, нежели работающие в классе «А». Заметно меньшее число нелинейных искажений - не выше 0,003 %. Можно добиться и более высоких результатов, используя биполярные транзисторы. Принцип работы усилителей на этих элементах будет рассмотрен ниже.

Но все равно имеется большое количество высших гармоник в выходном сигнале, отчего звук становится характерным металлическим. Существуют еще схемы усилителей, работающие в классе «АА». В них нелинейные искажения еще меньше - до 0,0005 %. Но главный недостаток транзисторных усилителей все равно имеется - характерный металлический звук.

«Альтернативные» конструкции

Нельзя сказать, что они альтернативные, просто некоторые специалисты, занимающиеся проектировкой и сборкой усилителей для качественного воспроизведения звука, все чаще отдают предпочтение ламповым конструкциям. У ламповых усилителей такие преимущества:

  1. Очень низкое значение уровня нелинейных искажений в выходном сигнале.
  2. Высших гармоник меньше, чем в транзисторных конструкциях.

Но есть один огромный минус, который перевешивает все достоинства, - обязательно нужно ставить устройство для согласования. Дело в том, что у лампового каскада очень большое сопротивление - несколько тысяч Ом. Но сопротивление обмотки динамиков - 8 или 4 Ома. Чтобы их согласовать, нужно устанавливать трансформатор.

Конечно, это не очень большой недостаток - существуют и транзисторные устройства, в которых используются трансформаторы для согласования выходного каскада и акустической системы. Некоторые специалисты утверждают, что наиболее эффективной схемой оказывается гибридная - в которой применяются однотактные усилители, не охваченные отрицательной обратной связью. Причем все эти каскады функционируют в режиме УНЧ класса «А». Другими словами, применяется в качестве повторителя усилитель мощности на транзисторе.

Причем КПД у таких устройств достаточно высокий - порядка 50 %. Но не стоит ориентироваться только на показатели КПД и мощности - они не говорят о высоком качестве воспроизведения звука усилителем. Намного большее значение имеют линейность характеристик и их качество. Поэтому нужно обращать внимание в первую очередь на них, а не на мощность.

Схема однотактного УНЧ на транзисторе

Самый простой усилитель, построенный по схеме с общим эмиттером, работает в классе «А». В схеме используется полупроводниковый элемент со структурой n-p-n. В коллекторной цепи установлено сопротивление R3, ограничивающее протекающий ток. Коллекторная цепь соединяется с положительным проводом питания, а эмиттерная - с отрицательным. В случае использования полупроводниковых транзисторов со структурой p-n-p схема будет точно такой же, вот только потребуется поменять полярность.

С помощью разделительного конденсатора С1 удается отделить переменный входной сигнал от источника постоянного тока. При этом конденсатор не является преградой для протекания переменного тока по пути база-эмиттер. Внутреннее сопротивление перехода эмиттер-база вместе с резисторами R1 и R2 представляют собой простейший делитель напряжения питания. Обычно резистор R2 имеет сопротивление 1-1,5 кОм - наиболее типичные значения для таких схем. При этом напряжение питания делится ровно пополам. И если запитать схему напряжением 20 Вольт, то можно увидеть, что значение коэффициента усиления по току h21 составит 150. Нужно отметить, что усилители КВ на транзисторах выполняются по аналогичным схемам, только работают немного иначе.

При этом напряжение эмиттера равно 9 В и падение на участке цепи «Э-Б» 0,7 В (что характерно для транзисторов на кристаллах кремния). Если рассмотреть усилитель на германиевых транзисторах, то в этом случае падение напряжения на участке «Э-Б» будет равно 0,3 В. Ток в цепи коллектора будет равен тому, который протекает в эмиттере. Вычислить можно, разделив напряжение эмиттера на сопротивление R2 - 9В/1 кОм=9 мА. Для вычисления значения тока базы необходимо 9 мА разделить на коэффициент усиления h21 - 9мА/150=60 мкА. В конструкциях УНЧ обычно используются биполярные транзисторы. Принцип работы у него отличается от полевых.

На резисторе R1 теперь можно вычислить значение падения - это разница между напряжениями базы и питания. При этом напряжение базы можно узнать по формуле - сумма характеристик эмиттера и перехода «Э-Б». При питании от источника 20 Вольт: 20 - 9,7 = 10,3. Отсюда можно вычислить и значение сопротивления R1=10,3В/60 мкА=172 кОм. В схеме присутствует емкость С2, необходимая для реализации цепи, по которой сможет проходить переменная составляющая эмиттерного тока.

Если не устанавливать конденсатор С2, переменная составляющая будет очень сильно ограничиваться. Из-за этого такой усилитель звука на транзисторах будет обладать очень низким коэффициентом усиления по току h21. Нужно обратить внимание на то, что в вышеизложенных расчетах принимались равными токи базы и коллектора. Причем за ток базы брался тот, который втекает в цепь от эмиттера. Возникает он только при условии подачи на вывод базы транзистора напряжения смещения.

Но нужно учитывать, что по цепи базы абсолютно всегда, независимо от наличия смещения, обязательно протекает ток утечки коллектора. В схемах с общим эмиттером ток утечки усиливается не менее чем в 150 раз. Но обычно это значение учитывается только при расчете усилителей на германиевых транзисторах. В случае использования кремниевых, у которых ток цепи «К-Б» очень мал, этим значением просто пренебрегают.

Усилители на МДП-транзисторах

Усилитель на полевых транзисторах, представленный на схеме, имеет множество аналогов. В том числе и с использованием биполярных транзисторов. Поэтому можно рассмотреть в качестве аналогичного примера конструкцию усилителя звука, собранную по схеме с общим эмиттером. На фото представлена схема, выполненная по схеме с общим истоком. На входных и выходных цепях собраны R-C-связи, чтобы устройство работало в режиме усилителя класса «А».

Переменный ток от источника сигнала отделяется от постоянного напряжения питания конденсатором С1. Обязательно усилитель на полевых транзисторах должен обладать потенциалом затвора, который будет ниже аналогичной характеристики истока. На представленной схеме затвор соединен с общим проводом посредством резистора R1. Его сопротивление очень большое - обычно применяют в конструкциях резисторы 100-1000 кОм. Такое большое сопротивление выбирается для того, чтобы не шунтировался сигнал на входе.

Это сопротивление почти не пропускает электрический ток, вследствие чего у затвора потенциал (в случае отсутствия сигнала на входе) такой же, как у земли. На истоке же потенциал оказывается выше, чем у земли, только благодаря падению напряжения на сопротивлении R2. Отсюда ясно, что у затвора потенциал ниже, чем у истока. А именно это и требуется для нормального функционирования транзистора. Нужно обратить внимание на то, что С2 и R3 в этой схеме усилителя имеют такое же предназначение, как и в рассмотренной выше конструкции. А входной сигнал сдвинут относительно выходного на 180 градусов.

УНЧ с трансформатором на выходе

Можно изготовить такой усилитель своими руками для домашнего использования. Выполняется он по схеме, работающей в классе «А». Конструкция такая же, как и рассмотренные выше, - с общим эмиттером. Одна особенность - необходимо использовать трансформатор для согласования. Это является недостатком подобного усилителя звука на транзисторах.

Коллекторная цепь транзистора нагружается первичной обмоткой, которая развивает выходной сигнал, передаваемый через вторичную на динамики. На резисторах R1 и R3 собран делитель напряжения, который позволяет выбрать рабочую точку транзистора. С помощью этой цепочки обеспечивается подача напряжения смещения в базу. Все остальные компоненты имеют такое же назначение, как и у рассмотренных выше схем.

Двухтактный усилитель звука

Нельзя сказать, что это простой усилитель на транзисторах, так как его работа немного сложнее, чем у рассмотренных ранее. В двухтактных УНЧ входной сигнал расщепляется на две полуволны, различные по фазе. И каждая из этих полуволн усиливается своим каскадом, выполненном на транзисторе. После того, как произошло усиление каждой полуволны, оба сигнала соединяются и поступают на динамики. Такие сложные преобразования способны вызвать искажения сигнала, так как динамические и частотные свойства двух, даже одинаковых по типу, транзисторов будут отличны.

В результате на выходе усилителя существенно снижается качество звучания. При работе двухтактного усилителя в классе «А» не получается качественно воспроизвести сложный сигнал. Причина - повышенный ток протекает по плечам усилителя постоянно, полуволны несимметричные, возникают фазовые искажения. Звук становится менее разборчивым, а при нагреве искажения сигнала еще больше усиливаются, особенно на низких и сверхнизких частотах.

Бестрансформаторные УНЧ

Усилитель НЧ на транзисторе, выполненный с использованием трансформатора, невзирая на то, что конструкция может иметь малые габариты, все равно несовершенен. Трансформаторы все равно тяжелые и громоздкие, поэтому лучше от них избавиться. Намного эффективнее оказывается схема, выполненная на комплементарных полупроводниковых элементах с различными типами проводимости. Большая часть современных УНЧ выполняется именно по таким схемам и работают в классе «В».

Два мощных транзистора, используемых в конструкции, работают по схеме эмиттерного повторителя (общий коллектор). При этом напряжение входа передается на выход без потерь и усиления. Если на входе нет сигнала, то транзисторы на грани включения, но все равно еще отключены. При подаче гармонического сигнала на вход происходит открывание положительной полуволной первого транзистора, а второй в это время находится в режиме отсечки.

Следовательно, через нагрузку способны пройти только положительные полуволны. Но отрицательные открывают второй транзистор и полностью запирают первый. При этом в нагрузке оказываются только отрицательные полуволны. В результате усиленный по мощности сигнал оказывается на выходе устройства. Подобная схема усилителя на транзисторах достаточно эффективная и способна обеспечить стабильную работу, качественное воспроизведение звука.

Схема УНЧ на одном транзисторе

Изучив все вышеописанные особенности, можно собрать усилитель своими руками на простой элементной базе. Транзистор можно использовать отечественный КТ315 или любой его зарубежный аналог - например ВС107. В качестве нагрузки нужно использовать наушники, сопротивление которых 2000-3000 Ом. На базу транзистора необходимо подать напряжение смещения через резистор сопротивлением 1 Мом и конденсатор развязки 10 мкФ. Питание схемы можно осуществить от источника напряжением 4,5-9 Вольт, ток - 0,3-0,5 А.

Если сопротивление R1 не подключить, то в базе и коллекторе не будет тока. Но при подключении напряжение достигает уровня в 0,7 В и позволяет протекать току около 4 мкА. При этом по току коэффициент усиления окажется около 250. Отсюда можно сделать простой расчет усилителя на транзисторах и узнать ток коллектора - он оказывается равен 1 мА. Собрав эту схему усилителя на транзисторе, можно провести ее проверку. К выходу подключите нагрузку - наушники.

Коснитесь входа усилителя пальцем - должен появиться характерный шум. Если его нет, то, скорее всего, конструкция собрана неправильно. Перепроверьте все соединения и номиналы элементов. Чтобы нагляднее была демонстрация, подключите к входу УНЧ источник звука - выход от плеера или телефона. Прослушайте музыку и оцените качество звучания.