Генератор импульсов своими руками. Генератор высоковольтных импульсов

Дополнив предыдущий генератор несколькими деталями, удастся получить светодиодную «мигалку» (рис. 2.3).

Генератор работает следующим образом. При включении источника питания конденсаторы С1 и С 2 начинают заряжаться каждый по своей цепи. Конденсатор С1 по цепи Rl, CI, R2, а конденсатор С2 по цепи R3, С2, R2. Поскольку постоянная времени второй цепи много меньше первой, сначала зарядится до напряжения источника питания конденсатор С2. По мере заряда конденсатора С1 транзистор VT1 начинает открываться и открывает транзистор VT2. Далее процесс открывания обеих транзисторов происходит лавинообразно. Сопротивление участка эмиттер-коллектор транзистора VT2 становится очень малым, и напряжение питания батареи GB1 оказывается приложенным к резистору R2. Благодаря элементам R3, С2, называемым схемой «вольтодобавки», заряженный до напряжения источника питания конденсатор С2 оказывается подключенным последовательно с гальваническим элементом и приложенное к светодиоду напряжение почти удваивается. В процессе разряда конденсатора С2 светодиод некоторое время светится, так как к нему приложено напряжение выше порогового. Конденсатор С1 также начинает разряжаться, что приводит к закрытию транзистора VT1, а вслед за ним и VT2. Процесс этот снова происходит лавинообразно, до надежного закрытия обоих транзисторов. Далее конденсаторы С1 и С2 опять начинают заряжаться и работа устройства повторяется, как это было описано выше.

Частота генерации зависит от сопротивления резисторов R1, R2, емкости конденсатора С1 и напряжения источника питания GB1. При указанных на схеме значениях указанных элементов она составляет около 1,3 Гц. Ток, потребляемый устройством от батареи, равен 0,12 мА. При питании от элемента АА данное устройство подобно «лампочке Пинк Флойдыча» (в свое время группа Pink Floyd выпустила компакт-диск с альбомом Pulse, в котором был встроен мигающий светодиод) - способно непрерывно работать в течение более одного года.

Рис. 2.3. Генератор световых импульсов на транзисторах

Светоизлучающий диод HL1 должен иметь рабочее напряжение менее 2 В. Можно использовать AJI112, AJI307A, AJI310, AJI316 (красный цвет свечения), AJI360 (зеленый цвет свечения).

Печатная плата и размещение элементов генератора световых импульсов на транзисторах приведены на рис. 2.4. Можно использовать транзисторы КТ315, КТ361 с любыми буквенными индексами. Конденсатор С1 типа К10-17, К10-47, оксидный С2 - К50-16, К50-35. В простых конструкциях, подобных этой, можно отказаться от печатного монтажа, выполнив его предварительно залуженным медным проводом толщиной 0,4…0,6 мм. Выводы деталей обрезают на расстоянии 3…4 мм от платы и вокруг каждого вывода делают 1-2 витка монтажного провода. Затем пропаивают витки паяльником. На выводы элементов, которые приподняты над платой (транзисторы VT1, VT2, светодиод HL1), надевают отрезки поливини лхлоридных трубочек, лучше разноцветных. Можно ввести свой «стандарт» маркировки элементов, например, для вывода эмиттера всегда использовать трубочки синего цвета, коллектора - красного, а базы - белого. Кстати, при монтаже располагайте элементы на плате так, чтобы надписи на них всегда можно было прочесть. Еще лучше, чтобы все надписи были обращены в одну сторону, например, слева направо.

Еще один генератор световых импульсов представляет собой формирователь прямоугольных импульсов на ОУ (рис. 2.5). Резисторы Rl, R2 образуют искусственную среднюю точку. Цепь отрицательной обратной связи образуют элементы R5, С1, а цепь положительной обратной связи - делитель R3, R4. Выходное напряжение генератора поступает на неинвер-

Рис. 2.5. Генератор световых импульсов на ОУ

тирующий вход через делитель R3, R4 с коэффициентом деления

Предположим, что на выходе ОУ имеется максимальное напряжение (по отношению к искусственной средней точке соединения резисторов Rl, R2), которое обозначим +ивых тах. С этого момента времени конденсатор С1 начинает заряжаться через резистор R5. ОУ работает в режиме компаратора (устройства сравнения), сравнивает напряжение на конденсаторе С1 с частью выходного напряжения

поданного на его неинвертирующий вход. До момента времени, пока напряжение на инвертирующем входе меньше, чем на неинвертирующем, выходное напряжение ОУ не изменяется. Как только оказывается превышенным порог переключения ОУ, выходное напряжение начинает уменьшаться, а положительная обратная связь через делитель R3, R4 придает этому процессу лавинообразный характер. Напряжение на выходе ОУ быстро достигает максимального отрицательного значения -ивых
шах- Процесс перезарядки конденсатора С1 пойдет в другую сторону. Как только напряжение на конденсаторе С1 станет более отрицательным, чем напряжение на резисторе R3 делителя R3, R4, ОУ вновь

Рис. 2.6. Печатная плата генератора световых импульсов на ОУ с размещением элементов

перейдет в состояние, при котором выходное напряжение станет положительным +Uвых mах. Далее процесс повторится. Таким образом, при генерировании колебаний конденсатор С1 периодически перезаряжается в диапазоне напряжений от +Uвых mахК до -Uвых mахК. Период колебаний мультивибратора равен

При R3= R4 период колебаний составляет Т ~ 2,2R5 С1.

Печатная плата и размещение элементов приведены на рис. 2.6. Кроме ОУ К553УД2 можно использовать К153УД2, а также многие другие ОУ, например, КР140УД608, КР140УД708. Место установки этих типов ОУ показано на рис. 2.6 штриховыми линиями. Поскольку указанные ОУ имеют внутренние цепи частотной коррекции, надобность в конденсаторе С2 в этом случае отпадает. Резисторы MJIT, С1-4, С2-10, С2-33 мощностью 0,125 или 0,25 Вт, конденсаторы КМ, КЛС, К10.

Учитывая, что в генераторе световых импульсов работают ОУ практически любого типа, можно изготовить своеобразный «тестер» для проверки ОУ. Интересное конструктивное исполнение такого устройства предложено в .

Третья схема генератора световых импульсов выполнена на цифровой KMOII-микросхеме. Она может найти применение в качестве имитатора охранной системы, в игрушках, схемах сигнализации режимов работы. Схема генератора световых импульсов приведена на рис. 2.7. Она состоит из генератора на элементах DD1.1, DDI.2 и включенных последовательно буферных элементов DD1.3, DDI.4. В силу невысокой нагрузочной

Рис. 2.7. Генератор световых импульсов на цифровой микросхеме

способности элементов КМОП в генераторе установлены усилители мощности на транзисторах VT1, VT2 и VT3, VT4. На выходах усилителей мощности наблюдаются импульсы противоположной полярности с частотой следования, определяемой частотозадающими элементами R2, С1 генератора. Частота генератора примерно равна Fr= 1,4 R2C1. При указанных на схеме элементах она составляет около 1 Гц.

Конденсатор С2 блокировочный по цепи питания устройства. Резистор R1 защищает вход микросхемы от перегрузок, резисторы R3, R4 определяют ток через светодиоды. В качестве примера на рис. 2.7 показаны четыре варианта подключения светодиодов к генератору световых импульсов, которые могут найти применение в конкретных конструкциях радиолюбителя. Для улучшения понимания принципа работы устройства конденсаторы СЗ, С4 изображены там, где они используются в работе.

Для первого и второго вариантов устанавливать транзисторы VT2, VT4 и конденсаторы СЗ, С4 не требуется. В первом варианте используются отдельные светодиоды любого цвета свечения, подключаемые анодом к выходам 1 и 2 генератора (либо только к одному из выходов). Наиболее широко распространенные светодиоды серии AJI307 имеют следующие цвета свечения в зависимости от индексов: К - красный, Р - оранжевый, М, Е - желтый, Г - зеленый.

Во втором варианте применен двухцветный светодиод AJIC331AM с отдельными выводами от кристаллов, который поочередно загорается зеленым и красным цветом.

Третий и четвертый варианты подключения рассчитаны на использование двухцветных светодиодов со встречно-параллельным включением. Здесь можно использовать светодиоды КИПД41 А-КИПД41М или любые из серии КИПД45.

В третьем варианте конденсаторы СЗ, С4 не устанавливаются, резистор R4 можно заменить перемычкой, а резистор R3 имеет номинал 470 Ом.

В четвертом варианте подключения сопротивление резисторов R3 и R4 составляет около 120 Ом. Подбором сопротивлений этих резисторов и выбором емкостей конденсаторов СЗ, С4 можно установить различную длительность вспышек светодиодов HL5, HL6. При увеличении емкости цвет свечения будет меняться скачком; при указанной на схеме наблюдаются короткие вспышки с поочередным изменением цвета свечения.

Печатная плата генератора световых импульсов и размещение деталей на ней показаны на рис. 2.8. В генераторе кроме указанной на схеме можно использовать аналогичную микросхему серии К1561. При изменении рисунка печатной платы можно применить и другие микросхемы серий К176, К561, К1561. Конденсатор С1 типа К10-17, К73, К78, остальное - К50-6, К50-16, К50-35. Резисторы MJIT, С2-33, С1-4. Транзисторы VT1, VT3 - любые из серий КТ315, КТ3102, a VT2, VT4 - из серий КТ361, КТ3107.

Налаживание генератора световых импульсов сводится к установке требуемой частоты переключения светодиодов, которая грубо может выбрана подбором конденсатора С1, а точнее - резистором R2. На время настройки частоты можно составить R2 из двух резисторов - переменного (1…2 мОм) и постоянного 100 кОм. После установки требуемой частоты генератора измеряют сопротивление цепочки из указанных резисторов и заменяют постоянным. Иногда требуется изменить яркость свечения светодиодов, которая выбирается подбором резисторов R3, R4. Необходимо следить за тем, чтобы не был превышен максимальный ток через светодиоды.

С микросхемой NE555 (аналог КР1006) знаком каждый радиолюбитель. Её универсальность позволяет конструировать самые разнообразные самоделки: от простого одновибратора импульсов с двумя элементами в обвязке до многокомпонентного модулятора. В данной статье будет рассмотрена схема включения таймера в режиме генератора прямоугольных импульсов с широтно-импульсной регулировкой.

Схема и принцип её работы

С развитием мощных светодиодов NE555 снова вышла на арену в роли регулятора яркости (диммера), напомнив о своих неоспоримых преимуществах. Устройства на её основе не требуют глубоких знаний электроники, собираются быстро и работают надёжно.

Известно, что управлять яркостью светодиода можно двумя способами: аналоговым и импульсным. Первый способ предполагает изменение амплитудного значения постоянного тока через светодиод. Такой способ имеет один существенный недостаток - низкий КПД. Второй способ подразумевает изменение ширины импульсов (скважности) тока с частотой от 200 Гц до нескольких килогерц. На таких частотах мерцание светодиодов незаметно для человеческого глаза. Схема ШИМ-регулятора с мощным выходным транзистором показана на рисунке. Она способна работать от 4,5 до 18 В, что свидетельствует о возможности управления яркостью как одного мощного светодиода, так и целой светодиодной лентой. Диапазон регулировки яркости колеблется от 5 до 95%. Устройство представляет собой доработанную версию генератора прямоугольных импульсов. Частота этих импульсов зависит от ёмкости C1 и сопротивлений R1, R2 и определяется по формуле: f=1/(ln2*(R1+2*R2)*C1), Гц

Принцип действия электронного регулятора яркости заключается в следующем. В момент подачи напряжения питания начинает заряжаться конденсатор по цепи: +Uпит – R2 – VD1 –R1 –C1 – -U пит. Как только напряжение на нём достигнет уровня 2/3U пит откроется внутренний транзистор таймера и начнется процесс разрядки. Разряд начинается с верхней обкладки C1 и далее по цепи: R1 – VD2 –7 вывод ИМС – -U пит. Достигнув отметки 1/3U пит транзистор таймера закроется и C1 вновь начнет набирать ёмкость. В дальнейшем процесс повторяется циклически, формируя на выводе 3 прямоугольные импульсы.

Изменение сопротивления подстроечного резистора приводит к уменьшению (увеличению) времени импульса на выходе таймера (вывод 3), и как следствие, уменьшается (увеличивается) среднее значение выходного сигнала. Сформированная последовательность импульсов через токоограничивающий резистор R3 поступает на затвор VT1, который включен по схеме с общим истоком. Нагрузка в виде светодиодной ленты или последовательно включенных мощных светодиодов включается в разрыв цепи стока VT1.

В данном случае установлен мощный MOSFET транзистор с максимальным током стока 13А. Это позволяет управлять свечением светодиодной ленты длиной в несколько метров. Но при этом транзистору может потребоваться теплоотвод.

Блокирующий конденсатор C2 исключает влияние помех, которые могут возникать по цепи питания в моменты переключения таймера. Величина его ёмкости может быть любой в пределах 0,01-0,1 мкФ.

Плата и детали сборки регулятора яркости

Односторонняя печатная плата имеет размер 22х24 мм. Как видно из рисунка на ней нет ничего лишнего, что могло бы вызвать вопросы.

После сборки схема ШИМ-регулятора яркости не требует наладки, а печатная плата легка в изготовке своими руками. В плате, кроме подстроечного резистора, используются SMD элементы.

  • DA1 – ИМС NE555;
  • VT1 – полевой транзистор IRF7413;
  • VD1,VD2 – 1N4007;
  • R1 – 50 кОм, подстроечный;
  • R2, R3 – 1 кОм;
  • C1 – 0,1 мкФ;
  • C2 – 0,01 мкФ.

Транзистор VT1 должен подбираться в зависимости от мощности нагрузки. Например, для изменения яркости одноваттного светодиода достаточно будет биполярного транзистора с максимально допустимым током коллектора 500 мА.

Управление яркостью светодиодной ленты должно осуществляться от источника напряжения +12 В и совпадать с её напряжением питания. В идеале регулятор должен питаться от стабилизированного блока питания, специально предназначенного для ленты.

Нагрузка в виде отдельных мощных светодиодов запитывается иначе. В этом случае источником питания диммера служит стабилизатор тока (его еще называют драйвер для светодиода). Его номинальный выходной ток должен соответствовать току последовательно включенных светодиодов.

Читайте так же

Дополнив предыдущий генератор несколькими деталями, удастся получить светодиодную «мигалку» (рис. 2.3).

Генератор работает следующим образом. При включении ис­точника питания конденсаторы С1 и С2 начинают заряжаться

Рис. 2.2. Печатная плата и размещение элементов звукового пробника

Рис. 2.3. Генератор световых импульсов на транзисторах

каждый по своей цепи. Конденсатор С1 по цепи R1, С1, R2, а конденса­тор С2 по цепи R3, С2, R2. Поскольку постоян­ная времени второй це­пи много меньше пер­вой, сначала зарядится до напряжения источ­ника питания конден­сатор С2. По мере заря­да конденсатора С1 транзистор VT1 начина­ет открываться и от­крывает транзистор VT2. Далее процесс от?срывания обеих транзисторов происходит лавинообразно. Сопротивление участ­ка эмиттер-коллектор транзистора VT2 становится очень ма­лым, и напряжение питания батареи GB1 оказывается прило­женным к резистору R2. Благодаря элементам R3, С2, называе­мым схемой «вольтодобавки», заряженный до напряжения ис­точника питания конденсатор С2 оказывается подключенным последовательно с гальваническим элементом и приложенное к светодиоду напряжение почти удваивается. В процессе разряда конденсатора С2 светодиод некоторое время светится, так как к нему приложено напряжение выше порогового. Конденсатор С1 также начинает разряжаться, что приводит к закрытию тран­зистора VT1, а вслед за ним и VT2. Процесс этот снова происхо­дит лавинообразно, до надежного закрытия обоих транзисто­ров. Далее конденсаторы С1 и С2 опять начинают заряжаться и работа устройства повторяется, как это было описано выше.

Частота генерации зависит от сопротивления резисторов R1, R2, емкости конденсатора С1 и напряжения источника питания GB1. При указанных на схеме значениях указанных элементов она составляет около 1,3 Гц. Ток, потребляемый устройством от батареи, равен 0,12 мА. При питании от элемента АА данное устройство подобно «лампочке Пинк Флойдыча» (в свое время группа Pink Floyd выпустила компакт-диск с альбомом Pulse, в котором был встроен мигающий светодиод) - способно непре­рывно работать в течение более одного года.

Светоизлучающий диод HL1 должен иметь рабочее напря­жение менее 2 В. Можно использовать АЛ112, АЛ307А, АЛ310, АЛ316 (красный цвет свечения), АЛ360 (зеленый цвет свечения).

Печатная плата и размещение элементов генератора свето­вых импульсов на транзисторах приведены на рис. 2.4. Можно использовать транзисторы КТ315, КТ361 с любыми буквенны­ми индексами. Конденсатор С1 типа К10-17, К10-47, ок­сидный С2 - К50-16, К50-35. В простых конструкциях, по­добных этой, можно отказать­ся от печатного монтажа, вы­полнив его предварительно за­луженным медным проводом толщиной 0,4…0,6 мм. Выво­ды деталей обрезают на рас­стоянии 3…4 мм от платы и вокруг каждого вывода дела­ют 1-2 витка монтажного провода. Затем пропаивают витки паяльником. На выво­ды элементов, которые при­подняты над платой (транзи­сторы VT1, VT2, светодиод HL1), надевают отрезки поли­вини лхлоридных трубочек, лучше разноцветных. Можно вве­сти свой «стандарт» маркировки элементов, например, для вывода эмиттера всегда использовать трубочки синего цвета, коллектора - красного, а базы - белого. Кстати, при монта­же располагайте элементы на плате так, чтобы надписи на них всегда можно было прочесть. Еще лучше, чтобы все надписи были обращены в одну сторону, например, слева направо.

Еще один генератор световых импульсов представляет со­бой формирователь прямоугольных импульсов на ОУ (рис. 2.5). Резисторы R1, R2 образуют искусственную среднюю точку. Цепь отрицательной обратной связи образуют элементы R5, С1, а цепь положительной обратной связи - делитель R3, R4. Выходное напряжение генератора поступает на неинвер-

%ис. 2.4. Печатная плата и размещение элементов генератора световых импульсов

Рис. 2.5. Генератор световых импульсов на ОУ

^еихмах г ^п, А = ^вых мах^^у ПОДаННОГО На вГО НвИНВерТИруЮ-

тирующий вход через делитель R3, R4 с коэффициентом де-ления К =-. Предположим, что на выходе ОУ имеет-

ся максимальное напряжение (по отношению к искусствен­ной средней точке соединения резисторов R1, R2), которое обозначим +Ubwx max- С этоГо момента времени конденсатор С1 начинает заряжаться через резистор R5. ОУ работает в режи­ме компаратора (устройства сравнения), сравнивает напряже­ние на конденсаторе С1 с частью выходного напряжения ДЗ

щий вход. До момента времени, пока напряжение на инверти­рующем входе меньше, чем на неинвертирующем, выходное напряжение ОУ не изменяется. Как только оказывается пре­вышенным порог переключения ОУ, выходное напряжение на­чинает уменьшаться, а положительная обратная связь через делитель R3, R4 придает этому процессу лавинообразный ха­рактер. Напряжение на выходе ОУ быстро достигает макси­мального отрицательного значения -Пвых max- Процесс переза­рядки конденсатора С1 пойдет в другую сторону. Как только напряжение на конденсаторе С1 станет более отрицательным, чем напряжение на резисторе R3 делителя R3, R4, ОУ вновь

Рис. 2.6. Печатная плата генератора световых импульсов на ОУ с размещением элементов

перейдет в состояние, при котором выходное напряжение ста­нет положительным +Ubwx max- Далес процесс повторится. Та­ким образом, при генерировании колебаний конденсатор С1 периодически перезаряжается в диапазоне напряжений от +Ubwx maxK ДО -Пвых тахК. Период колебаний мультивибратора равен Т = = 2Д5С11п. При R3-= R4 период колебаний составляет Т = 2,2R5 С1.

Печатная плата и размещение элементов приведены на рис. 2.6. Кроме ОУ К553УД2 можно использовать К153УД2, а также многие другие ОУ, например, КР140УД608, КР140УД708. Место установки этих типов ОУ показано на рис. 2.6 штриховыми линиями. Поскольку указанные ОУ име­ют внутренние цепи частотной коррекции, надобность в кон­денсаторе С2 в этом случае отпадает. Резисторы МЛТ, С1-4, С2-10, С2-33 мощностью 0,125 или 0,25 Вт, конденсаторы КМ, КЛС, К10.

Учитывая, что в генераторе световых импульсов работают ОУ практически любого типа, можно изготовить своеобразный «тестер» для проверки ОУ. Интересное конструктивное испол­нение такого устройства предложено в .

Третья схема генератора световых импульсов выполнена на цифровой КМОП-микроохеме. Она может найти применение в качестве имитатора охранной системы, в игрушках, схемах сигнализации режимов работы. Схема генератора световых им­пульсов приведена на рис. 2.7. Она состоит из генератора на элементах DD1.1, DDI.2 и включенных последовательно буфер­ных элементов DD1.3, DDI.4. В силу невысокой нагрузочной

способности элементов КМОП в генераторе установлены усили­тели мощности на транзисторах VT1, VT2 и VT3, VT4. На вы­ходах усилителей мощности наблюдаются импульсы противо­положной полярности с частотой следования, определяемой частотозадающими элементами R2, С1 генератора. Частота ге­нератора примерно равна Fr= 1,4 R2C1. При указанных на схе­ме элементах она составляет около 1 Гц.

Конденсатор С2 блокировочный по цепи питания устройства. Резистор R1 защищает вход микросхемы от перегрузок, рези­сторы R3, R4 определяют ток через светодиоды. В качестве при­мера на рис. 2.7 показгшы четыре варианта подключения свето-диодов к генератору световых импульсов, которые могут найти применение в конкретных конструкциях радиолюбителя. Для улучшения понимания принципа работы устройства конденса­торы СЗ, С4 изображены там, где они используются в работе.

Для первого и второго вариантов устанавливать транзисто­ры VT2, VT4 и конденсаторы СЗ, С4 не требуется. В первом ва­рианте используются отдельные светодиоды любого цвета све­чения, подключаемые анодом к выходам 1 и 2 генератора (ли­бо только к одному из выходов). Наиболее широко распростра­ненные светодиоды серии АЛ307 имеют следующие цвета свечения в зависимости от индексов: К - красный, Р - оран­жевый, М, Е - желтый, Г - зеленый.

Во втором варианте применен двухцветный светодиод АЛС331АМ с отдельными выводами от кристаллов, который поочередно загорается зеленым и красным цветом.

Третий и четвертый варианты подключения рассчитаны на использование двухцветных светодиодов со встречно-парал­лельным включением. Здесь можно использовать светодиоды КИПД41А-КИПД41М или любые из серии КИПД45.

В третьем варианте конденсаторы СЗ, С4 не устанавливают­ся, резистор R4 можно заменить перемычкой, а резистор R3 имеет номинал 470 Ом.

В четвертом варианте подключения сопротивление резисто­ров R3 и R4 составляет около 120 Ом. Подбором сопротивле­ний этих резисторов и выбором емкостей конденсаторов СЗ, С4 можно установить различную длительность вспышек светодио­дов HL5, HL6. При увеличении емкости цвет свечения будет меняться скачком; при указанной на схеме наблюдаются ко­роткие вспышки с поочередным изменением цвета свечения.

Печатная плата генератора световых импульсов и размеще­ние деталей на ней показаны на рис. 2.8. В генераторе кроме указанной на схеме можно использовать аналогичную микро­схему серии К1561. При изменении рисунка печатной платы можно применить и другие микросхемы серий К176, К561, К1561. Конденсатор С1 типа К10-17, К73, К78, остальнй[е - К50-6, К50-16, К50-35. Резисторы МЛТ, С2-33, С1-4. Транзи­сторы VT1, VT3 - любые из серий КТ315, КТ3102, а VT2, VT4 - из серий КТ361, КТ3107.

Рис. 2.8. Печатная плата и размещение элементов генератора световых импульсов на цифровой микросхеме

Налаживание генератора световых импульсов сводится к установке требуемой частоты переключения светодиодов, кото­рая грубо может выбрана подбором конденсатора С1, а точ­нее - резистором R2. На время настройки частоты можно со­ставить R2 из двух резисторов - переменного (1…2 мОм) и постоянного 100 кОм. После установки требуемой частоты ге­нератора измеряют сопротивление цепочки из указанных ре­зисторов и заменяют постоянным. Иногда требуется изменить яркость свечения светодиодов, которая выбирается подбором резисторов R3, R4. Необходимо следить за тем, чтобы не был превышен максимальный ток через светодиоды.

Сайт находится в тестовом режиме. Приносим извинения за сбои и неточности.
Просим Вас писать нам о неточностях и проблемах через форму обратной связи.

Двухчастотный генератор на мигающем светодиоде

А. Бутов. Двухчастотный генератор на мигающем светодиоде. Мигающие светодиоды быстро завоевали симпатии радиолюбителей. Простота их применения окупает некоторые недостатки, например, относительно высокую стоимость и невозможность управлять частотой и скважностью световых импульсов. Радиолюбители не были бы таковыми, если бы не искали нестандартные варианты схем включения и применения различным радиодеталям. Не остались без внимания и мигающие светодиоды. В статье описаны два устройства. Первое из них выполнено на таком светодиоде и одном транзисторе. Светодиод одновременно работает и как низкочастотный (1…3 Гц) генератор и как генератор пачек импульсов с частотой заполнения 100…350 кГц. Второе устройство отличается от первого дополнительным делителем частоты на микросхеме К561ИЕ10 и двух транзисторах, что превращает его в звуковой генератор тональных импульсов.

Светодиодные источники оптического излучения видимого диапазона, в силу конструктивных особенностей не могут светиться при напряжении ниже 1,6... 1,8 В. Это обстоятельство резко ограничивает возможность применения светодиодов в устройствах, с низковольтным (от одного гальванического элемента) питанием. Предлагаемые светодиодные излучатели с низковольтным (0,1... 1,6 В) питанием можно использовать для индикации напряжений, передачи данных по оптическим каналам связи и т.д. Для их питания можно использовать и электрохимические элементы сверхмалого напряжения, в которых электролитом служат увлажненная почва или биологически активные среды.

Многообразие схем низковольтного питания светодиодов можно свести к двум основным разновидностям преобразования напряжения низкого уровня в напряжение высокого. Это схемы с емкостными и индуктивными накопителями энергии.

На рис.1 показана схема питания светодиода с использованием принципа удвоения напряжения питания. Генератор низкочастотных импульсов, частота следования которых определяется цепочкой R1-C1, а продолжительность - R2-C1, выполнен на транзисторах p-n-р и n-p-n структуры. С выхода генератора короткие импульсы через резистор R4 подаются на базу транзистора VT3, в коллекторную цепь которого включен красный светодиод HL1 и германиевый диод VD1. Между выходом генератора импульсов и точкой соединения светодиода и германиевого диода подключен электролитический конденсатор С2 большой емкости.



Рис.1. Cхема питания светодиода по принципу удвоения напряжения

В период продолжительной паузы между импульсами (транзистор VT2 закрыт и не проводит ток) этот конденсатор заряжается через VD1 и R3 до напряжения источника питания. При генерации короткого импульса транзистор VT2 открывается. Отрицательно заряженная обкладка конденсатора С2 оказывается соединенной с положительной шиной питания. Диод VD1 запирается. Заряженный конденсатор С2 оказывается подключен последовательно с источником питания и нагружен на цепочку: светодиод - переход эмиттер-коллектор транзистора VT3. Поскольку тем же импульсом транзистор VT3 отпирается, его сопротивление эмиттер-коллектор уменьшается. Таким образом, практически удвоенное напряжение питания (исключая незначительные потери) оказывается кратковременно приложенным к светодиоду - следует его яркая вспышка. После этого процесс заряда-разряда конденсатора С2 периодически повторяется.

При использовании светодиодов типа АЛ307КМ с напряжением свечения 1,35... 1,4 В, рабочее напряжение генератора составляет 0,8...1,6 В. Границы диапазона определены так: нижняя указывает напряжение начала свечения светодиода, верхняя - напряжение, при котором потребляемый устройством ток равен 20 мА.

Поскольку генератор работает в импульсном режиме, генерируются яркие вспышки света, привлекающие внимание. В схеме необходимо использовать хотя и низковольтный, но довольно громоздкий электролитический конденсатор С2 большой емкости.

Источники низковольтного питания светодиодов на основе мультивибраторов изображены на рис.2, 3. Первый из них выполнен на основе асимметричного мультивибратора, вырабатывающего короткие импульсы с большой междуимпульсной паузой. Накопитель энергии - конденсатор СЗ - периодически заряжается от источника питания и разряжается на светодиод, суммируя свое напряжение с напряжением питания.



Рис.2. Источник низковольтного питания светодиода
на основе асимметричного мультивибратора (импульсный характер свечения)

Генератор (рис.3) обеспечивает, в отличие от предыдущей схемы, непрерывный характер свечения светодиода. Устройство выполнено на основе симметричного мультивибратора и работает на повышенных частотах. В связи с этим емкости конденсаторов в этой схеме достаточно малы. Конечно, яркость свечения заметно понижена, но средний ток, потребляемый генератором при напряжении питания 1,5 В, не превышает 3 мА.


Рис.3. Источник низковольтного питания светодиода
на основе симметричного мультивибратора (непрерывный характер свечения)

Преобразователи напряжения конденсаторного типа (с удвоением напряжения) для питания светодиодных излучателей теоретически могут обеспечить снижение рабочего напряжения питания только до 60%. Использование в этих целях многокаскадных умножителей напряжения малоперспективно в связи с прогрессивно возрастающими потерями и падением КПД преобразователя.

Более перспективны в плане дальнейшего снижения напряжения питания преобразователи с индуктивными накопителями энергии. Заметно понизить нижнюю границу напряжения питания стало возможным за счет перехода на LC-варианты схем генераторов, использующих индуктивные накопители энергии.

В качестве индуктивного накопителя энергии в первой из схем (рис.4) использован телефонный капсюль. Одновременно со световым излучением генератор вырабатывает акустические сигналы. При увеличении емкости конденсатора до 200 мкФ генератор переходит в импульсный режим работы, вырабатывая прерывистые световые и звуковые сигналы. В качестве активного элемента используется несколько необычная структура - последовательное соединение транзисторов разного типа проводимости, охваченных положительной обратной связью.




Рис.4. Источник с индуктивным накопителем энергии

(телефонный капсюль)

Преобразователи напряжения для питания светодиода на рис.5 и 6 выполнены на аналогах инжекционно-полевых транзисторов. Первый из преобразователей (рис.5) использует комбинированную индуктивно-емкостную схему повышения выходного напряжения, сочетая принцип емкостного удвоения напряжения с получением повышенного напряжения на коммутируемой индуктивности.




Рис.5. Преобразователь напряжения для питания светодиода
на аналоге инжекционно-полевого транзистора - вариант 1

Наиболее прост генератор на аналоге инжекционно-полевого транзистора (рис.6), где светодиод одновременно исполняет роль конденсатора и является нагрузкой генератора. Устройство работает в узком диапазоне питающих напряжений, однако яркость свечения светодиода довольно высока, поскольку преобразователь является чисто индуктивным и имеет высокий КПД.




Рис.6. Преобразователь напряжения для питания светодиода
на аналоге инжекционно-полевого транзистора - вариант 2

На рис.7 показан генератор трансформаторного типа для питания светодиодов низковольтным напряжением. Генератор содержит три элемента, одним из которых является светоизлучающий диод. Без светодиода устройство является простейшим блокинг-генератором, причем на выходе трансформатора может формироваться довольно высокое напряжение. Если в качестве нагрузки генератора использовать светодиод, он начинает ярко светиться. В схеме в качестве трансформатора использовано ферритовое кольцо Ф1000 К10x6x2,5. Обмотки трансформатора имеют по 15.. .20 витков провода ПЭВ диаметр 0,23 мм. В случае отсутствия генерации концы одной из обмоток трансформатора меняют местами.



Рис.7. Генератор трансформаторного типа для питания светодиодов низковольтным напряжением

При переходе на высокочастотные германиевые транзисторы типа 1Т311, 1Т313 и использовании унифицированных импульсных трансформаторов типа МИТ-9, ТОТ-45 и др., нижнюю границу рабочих напряжений можно опустить до 0,125 В.

Напряжение питания всех рассмотренных схем, во избежание повреждения светодиодов, не должно превышать 1,6... 1,7 В.